
Tcl/Tk

Measurement guide

written by Balázs Gaál

1.Introduction

1.1.Review

Tcl and Tk are two program packets, that help running and developing X-Windows based graphic user
surface in UNIX environment. (There is also an experimental implementation for MS-Windows.) This
guide provides a short review about the Tcl language, basis of Tk, and it will demonstrate an expansion
as an example, with that we can realize a network communication with the help of Tcp/IP sockets.
This description assumes a minimal precognition of UNIX, X-Windows, and TCP/IP.

Tcl (Tool Command Language) is a high-level „script” language based on a simple interpreter, which
can be compared mostly to perl language, or to the UNIX C-Shell script. Variants, arrays, controlling
structures, processes can be used in it. One of its most important features, that a Tcl interpreter written
as a C function can be built in any kind of C or C++ user programs, thus basic functions of Tcl can be
expanded. We will take the 7.3. version as a basis in this description.

Tk (ToolKit) is an expansion like this, with that we can generate a Motif user surface with the help of
the built-in commands. Almost every task can be solved with it during a more shorter time, than it
would be programmed merely in C. Further, Tk program is more transparent and can be modified
more flexibly. We will demonstrate shortly possibilities of the 3.6. version.

Tcl-DP (Distributed Programming) is an expansion, that can be given to Tcl and Tk, which supports a
distributed object-oriented programming, remote process calling, and TCP/IP socket communication.
Later we will talk about some commands of the 3.2 version.

There are four main advantages of Tcl/Tk:

• A user C or C++ program may contain a Tcl or Tk interpreter together with its built-in
commands, we must write only new commands necessary to the application in C language. We
have function directories for this, that can be simply embedded and provide many convenient
functions.

• A very fast development cycle. Since it is at higher level, than C language, after a short learning
we can generate graphic surfaces of full value. Size of code and developing time are minimum
the tenth of, if the program would have been made in C, with the help of Xt/Motif toolkit.
Since the language is interpreted, code can be modified without retranslation and reset, thus
trying the new ideas and improvement of failures can be made very quickly. That is why
execution is naturally slower, than it would be translated program, but it cannot be noticed at
the performance of the today's workstations. If the deceleration cannot be permitted, then the
critical parts can easily be written to C.

• Tcl is an ideal language for realizing a communication among programs, because the interpreter
can be embedded into every program. Programs may send Tcl scripts to each other, in that
there are not only programs, but also variants, and controlling structures. We have only to
implement commands in the program, all the other issues are solved by Tcl.

• Because of transparency of language the basic conception can be learnt quickly, and it is
enough to learn only the new command at expansion.

1.2. Signs

Commands, that must be written accurately, would be signed with a different font type

(Courier, actually). E.g.:

 set a hello
 ⇒ hello

A ⇒ sign means the answer in case of a normal recurrence value. A ∅ sign means the wrong
recurrence value. E.g.:

 set a hello 23
 ∅ wrong # args: should be „set varName ?newValue?”

At description of Tcl commands italic letters sign the formal parameters, optional parameters are
between question marks, and … signs repeteition. E.g.:

 set varName ?newValue?
 unset varName ?varName varName...?

1.3.Usage

We can work with Tcl and Tk interpreters in two ways:

• Interactively - commands written from the terminal are executed immediately then, and result
is displayed to the monitor. Thus it is easy to try things, to make experiments. Most of these
examples listed in this description can be tried on the simplest and on the most spectacular way.

• On the non-interactive way – interpreter executes then a Tcl script stored in a file

tclsh We can start an intepreter interactively with writing a

 tclsh

command in. (Sets necessary for running the program are contained by the appendix in a UNIX
environment.) We will get a % prompt in the next line, which means, that the interpreter has
received the commands. The tclsh (Tcl Shell) is actually a UNIX Shell (like sh or csh), so it
is applicable for running external programs as well.

wish Interpreter of Tk is the wish (Windowing Shell). Operation of the wish is the same as the
 operation of the tclsh, but it displays a window by starting, which will be the base of the
 graphic surface.
 In a non-interactive way, for example, we can run a tcl script saved to a foo.tcl file with a

 tclsh foo.tcl

 command. In case of the wish we have to apply the

 wish -f foo.tcl

 command.
 The Tcl script file can be executed even in itself (in a Unix environment), if we have an
 execution right to the file (it is available with the chmod a+x foo.tcl command), and the

 first line of the file is the following:
 #!/usr/loca/bin/tclsh

 or in case of a wish

 #!/usr/local/bin/wish -f

 Both programs contain the Tcl-DP expansion.

man There is a full online description about tclsh, wish and every Tcl/Tk command, a so-
 called manual page, which can be seen with the help of the a command called

 man command.

 The online manual is distributed into chapters, and in the text tclsh command of chapter 1.
 is signed with, for example, tclsh(1).
 For sake of an easier orientation, commands are highlighted on the left side of the page, and
 there are some reference cards, as an enclosement.

2. Tcl language

This chapter summarizes basics of the Tcl language, including syntax and a brief description of the
commands, illustrated with examples.

2.1 Syntax of the Tcl language

Tcl script consists of one or more new lines, or commands separated with semicolons.

Every command consists of one or more words, where the first word is the name of the command, and
words following the first word are the arguments of the command. Words are separated from each
other with spaces or tabulator signs. A command may consist of any number of words. Signs
separating words or commands from each other are not parts of any of the words.

Every command can be evaluated in two steps. As a first step, interpreter disintegrates the command
into words, and makes the replacements. This step is the same in case of any commands, and it is made
by the parser. As a second step, it executes command designated by the first word, transmitting all the
other words, as an argument.

There are three replacements possible during the analysis:

1.Variant substitution

Substitutiont of variants can be obtained with application of the $ sign. The $ sign can be everywhere
within the world, and a valid variant name has to go after it. The effect of it results the substitution of
the value of the variant in the word. E.g.:

 set inches 12
 expr $inches*2.54
 ⇒ 30.48

The first command fills word „12” to the variant named inches. By analysing the second command, the
„$inches” is replaced with „12”, thus by the execution the „expr 12*2.54” command will be
executed, obtaining result of „30.48”.

In some cases we can use form of ${varName} for sake of clarity.

2. Command substitution

A word placed between rectangular brackets is evaluated as a command, and its return value will be
substituted. The word within the brackets must be a valid Tcl script. E.g.:

 set inches 12
 set mm [expr $inches*2.54]
 ⇒ 30.48

The second set command can only „see” the „30.48” word during the execution.

3. Backslash substitution

This substitution can be used for placing special characters – e.g. „$”, „[”, „ ; ”, spaces and new line
signs in a word. We can use all the escape sequences recorded in ANSI C (\n – new line, \t tab, \\ - \etc.)
E.g.:

 set msg Clock\type\6342\nPrice:\ \$19.99
 ⇒ Clock type 6342
 ⇒ Price: $19.99

The backslash – new line sequence can be used for paginating long lines. E.g.:

 set thisisaverylongvariablename \
 value

Paginated line must begin with a space or a tabulator sign, and pagination is considered to be a division.

We have a possibility for asking in another way the parser for quoting. It can be obtained in two ways:

1.With quotation marks

A series of character placed between quotation marks is considered to be a word, regardless if it is a
space, a tab, a new line, etc. Substitutions of variants, commands, and backslashes are executed int he
same way, as in another case. Quotation mark is not a part of the word. E.g.

 set msg Clock\type\6342\nPrice:\ \$19.99

and
 set msg „Clock type 6342
 Price: \$19.99

can obtain the same result, as in the previous case.

2. With curly brackets

Parser does not execute any substitutions among curly brackets. (Except the backslash – new line
sequence.)

 set msg {Clock\type\6342\nPrice:\ \$19.99}
 ⇒ Clock type 6342\nPrice:\$19.99

The most important usage of curly brackets is the delayed evaluation. For example, calculation of value
of 5! is the following:

 set result 1
 set i 5
 while {$i > 0} {
 set result [expr $result*$i]
 set i [expr $i-1]
 }

In the while loop always the actual value of variants will be substituted because of curly brackets.

We can write notifications after the # sign placed to the beginning of the line – more exactly, to a place,
where the first character of the command will be placed. A # sign placed to another place does not
mean any notifications, parser considers itt o a common character.

We must note two important rules in connection with substitutions:

1. Analysis must be executed in one pass, from left to right. Each and every character is read
exactly once.

2. At most only a onefold substitution happens to the individual characters, and the substituted
value will not be used during the further substitutions.

The following example illustrates it:

 set x 1
 set a x
 set b $$a

Value of b variant will be „$x”, since substitution is executed only once.

One of the consequences of these rules, that in

 set city „Los Angeles”
 set bigCity $city

script the second command is executed correctly, because value of the city variant is substituted, as a
word.

It is sometimes a not required behaviour. For example, the next command can be wrong:

 exec rm [glob *.o]

 ∅ rm: a.o b.o c.o nonexistent

The glob command returns filenames fitting to the sample, and the exec command tries to execute
the rm UNIX command in a returned „a.o bo. co.” filename, which does not exist. For the right
operation it would be necessary to disintegrate to value returned by glob. This second analysis can be
forced by the eval command:

 eval exec rm [glob *.o]

2.2. Variants

Simple variants have one name and one value. Variant names and values can be optional character series
in Tcl. There are no types of variants, every value is stored as a string. Assignment of variant is
dynamic, it can be prepared and deleted any time.

Variants can be prepared, modified and read with the set varName ?value? command. If
value is given, then varName variant takes the value of value. Return value is the new value of
the variant in any case.

We can use associative arrays besides simple variants. An array is the collection of elements, which are
variants, too, with their own names and values. E.g.:

 set uid (root) 1000
 ⇒ 1000
 set uid(guest) 200
 ⇒ 200
 set uid (root)
 ⇒ 1000

It is not necessary to declare arrays in advance, their element number can be changed optionally.
Substitution of variants can be used in case of arrays, too:

 set login guest
 set a [expr $uid($login)+1]
 ⇒ 201

unset Variants, array elements, or whole arrays can be deleted with the help of the unset command:

 unset login
 unset uid (guest)
 unset uid

incr Value of variants with a whole value can increase with the incr varname ?increment?

command, with an increment value, or, if it is not given, then with one.

append The append varName value ?value….? command places values of value after

value of the variant.

2.3. Expressions

expr The expr arg ?arg...? command evaluates expression given by its arguments and the

result will be the return value.

 Syntax of numeric values is the same as the ones defined in ANSI DC (decimal, octal,

hexadecimal, float). Every ANSI C operator and large amount of numeric functions can be
used with their usual features, with a surplus, that the relation oprators can also be applied for
strings.

 Arguments of different types are converted automatically, but an explicit conversion is also

possible with double, int and round functions. See in details in the expr(n) online
description.

2.4. Lists

We call list an arranged group of elements in Tcl. Elements of the list are divided from each other with
a space, or a tabulator position:

 Apple Orange Strawberry Lemon

lindex The lindex list index returns the element of the given list. Indexing of elements

starts from 0.
 lindex (Apple Orange Strawberry Lemon)1
 ⇒ Orange

Lists occurring in commands are usually between curly brackets, since they generate a word, but
brackets are not parts of the list:

 set fruits {Apple Orange Strawberry Lemon}
 ⇒ Apple Orange Strawberry Lemon

Elements of lists can also be lists:

 lindex {a b {c de e} f) 2
 ⇒ c d e

There are two commands, with that we can make lists. concat and list.

concat The concat list ?list…? concatenates list given in its arguments to a single list.

 concat {a b c} {d e} f {g h i}
 ⇒ {a b c} {d e} f {g h i}

list The list value ?value…? considers its arguments to list elements one by one:

 list {a b c} d e} f {g h i}
 ⇒ {a b c} {d e} f {g h i}

The list command always returns a list with a righ format independently from its arguments,
assigning backslashes, or curly brackets, if it is necessary. In case of concat it is not guaranteed.

llength The llength list command returns the number of the elements of the list:

 llength {{a b c } {d e} f {g h i}}
 ⇒ 4
 llength a
 ⇒ 1
 llength {}
 ⇒ 0

linsert The linsert list index value?value..? command returns the list, to that it

inserts the given values in front of the element with a given index (ha the index is larger, than
the number of elements, or equal with them, then it will place it to the end of the list):

 linsert {{a b c } {d e} f {g h i}} 1 A B C
 ⇒ {a b c} A B C {d e } f {g h i}

lreplace The lreplace list first last ?value value..? command returns the list,

from it deleted elements with first and last indexes, and – if there are any – substituted
them with value parameters:

 lreplace {{a b c} {d e} f {g h i}} 2 2
 ⇒ {a b c} {d e} f {g h i}} 0 1 X {A B} Y
 ⇒ X {A B} Y f {g h i}

lrange The lrange list first last command returns a part of the list from the element

with first index till the element with last index (if last index is end, the to the end).

 lrange {{a b c} {d e} f {g h i}} 1 2
 ⇒ {d e} f
 lrange { A B C D E F} 2 end
 ⇒ C D E F

lappend The lappend varName value ?value…? command fits the given list values to the

variant named varName:

 set 1 {A B C D E F}

 ⇒ A B C D E F
 lappend 1 X {Y Z}
 ⇒ A B C D E F X {Y Z}
 set 1
 ⇒ A B C D E F X {Y Z}

The lappend, as well as append, is not a definitely necessary command, since it can be built up
from another commands, but it is very efficient for long lists.

split The split string ?splitChars? disintegrates the given string, and returns, as a list.

Divinding character(s) can be given in the splitChars argument:

 set f /usr/local/lib/libtcl.a
 split $f/

 ⇒ {} usr local lib libtcl.a

join The join list ?joinString? does its inverse:

 join {{} usr local lib libtcla.} /
 ⇒ /usr/local/lib/libtcl.a

2.5.Control structures

There are two kinds of conditional commands: if and switch.

if The if test1 ?then? body1 ?elseif test2 ?then? body2 elseif...?

?else? ?bodyn? command evaluates the test1 expression, and if it has a non-zero
value, then it executes the body1 script, and returns its value. Otherwise it evaluates the
test2 expression, and if it has a non-zero value, then it executes the body2 script, and
returns its value, and so on. If none of the test were successful, then it executes the bodyn
script, and returns its value. E.g.:

 if {$x < 0} {
 set x 0
 }

 Expressions used at if and the other controlling structures are worth to place between curly

brackets, so the evaluation could happen at the right time. Every starting curly bracket must be
in the same line, as the previous word. So the following script is wrong:

 if {$x < 0}
 {
 set x 0
 }

switch The switch ?options? string pattern body ?pattern body…?

command fits the string to every pattern, until it will not find a matching, and then it
executes the belonging body script, and returns. If the last pattern is a default, then it fits
to everything. Options can be –exact, -glob, -regexp, accordingly, if we want an
exact, glob-style or regular fitting (the default is the glob – see it later). The

 switch $xs a {incr t1} b {incr t2} c {incr t3}

form can also be written like this:

 switch $xs {
 a {incr t1}
 b {incr t2}

 c {incr t3}
 }

If the body command is ”- ” then it executes the command of the next pattern, thus we can assign
the same command to several patterns. E.g.:

 switch $x {
 a –
 b –
 c {incr t1}
 d {incr t2}
 default {incr t3}
 }

If value of the x variant is ”a”, ”b” or ”c”, then it increases the value of t1 variant, and if it is ”d”,
then it increases the value of t2, and in case of oher values the value of t3 variant.

There are three cycle commands. while, for and foreach.

while The while test body command evaluates the test expression, and if it is a non-zero

one, it executes the body script, and then it evaluates the expression again. It is repeated again
and again, until the evaluation will not result zero, and then it returns with an empty string. The
next script copies elements of list ato list b:

 set b ” ”
 set i [expr [llength $a] -1]
 while {$i>=0} {
 lappend b [lindex b [lindex $a $i]
 incr i -1
 }

for The for init test reinit body command executes the init scipt, and then evaluates

the test expressiion, and if it is a non-zero one, then executes the body script, and then the
reinit script, and it evaluates again the expression. It is repeated again and again, until the
evaluation will not result zero, and then it returns with an empty string. The previous example
realized with for will be the following:

 set b ” ”
 for {set i expr [llength $a]-1]} {$i>=0} \
 {incr i -1} {lappend b [lindex $a $i]}

foreach The foreach varName list body command sets the variant named varName to

every element of the given list in sequence, and executes the body script. It makes easy the
process of lists. Realization of the previous example with the help of the foreach will be the
following:

 set b ” ”
 foreach i $a{
 set b[linsert $b 0 $i]
 }

We can also use break and continue commands, that are usual in C.

break The break interrupts execution of the innermost cycle.
continue The continue leaps immediately to the next iteration of the innermost cycle.

eval The eval arg ?arg..? can generally be used for generation and execution of command

scripts.
 One of its applications is the execution of commands stored in variants:

 set cmd "set x 0"
 eval $ cmd

 Another important application is the second analysis, which we have already seen earlier.

source The source fileName command reads and executes the given script file.

2.6. Processes

There are processes in Tcl, that can be parametered in many ways, and can be defined with a return
value.

proc The proc name arglist body command generates a process named as name, with a
list of parameters, listed in arglist, with a body. E.g.:

 proc add {a b} {expr $a+$b}
 add 12 4
 ⇒ 16
 add 3
 ∅ no value given for parameter ”b” to „plus”

return Return value of process is the return value of the last command. Using the return
command we can return immediately with the given value.

global By evaluating the body of the process, the emergent variants are automatically local. We can
obtain global variants with the global name1 ?name2..? command.

There is a possibility for the default of the parameter. If the argument is not given by calling, the
process uses the default. If there is a default set to a parameter, then all the following parameters must
be like this. E.g.:

 proc inc {value {increment 1}} {
 expr $value+$increment
 }
 inc 23 4
 ⇒ 27
 inc 62

 ⇒ 63

If the last element of the argument is args, then parameter with alternate numbers can be
transmitted by calling. The args list will contain the parameters (which can even be an empty list).
E.g.:

 proc sum args {
 set s 0
 foreach I $args {
 incr s $I
 }
 return $s
 }
 sum 1 2 3 4 5
 ⇒ 15
 sum
 ⇒ 0

Within the process variants of the calling process can be available in another way beyond the
global command. Variants of the optional calling levels are available with upvar and uplevel
commands. See the online description for further information.

2.7 Error handling

If an error occurs during the execution of a command, then running of the program is interrupted,
and an error message is displayed. We can get further information about the error in a global variant
named errorInfo.

catch It would be necessary to handle errors within the program. We can use the catch
command ?varName? command, that executes the given command, and places its result (or an
error message in case of an error) to the variant named varName. Return value of the catch
command will be the return error code of the command (it will be 0 in case of a successfully
executed command).

error We can return from this process with the error message ?info? ?code?
command, where the message is an error message, the info is the value of the errorInfo
variant, and the code is the return error code (its value is usually 1).

2.8. Maintenance of strings

string There are many string operation programs in Tcl. Many of them are realized by the string
command. This command has numerous subcommands. For example, string index and
string range commands solve the same tasks on strings, as on the lindex and lrange lists.
The string first string1 string2, and the string last string1 string2
commands search for string1 in string2 from the left and from the right. In function of
string compare it corresponds to the strcmp () C function.

format Formatted strings can be prepared with the help of the format formatString

?value value…? command, which can be used on the same way, as ANSI C sprintf ()
function.

scan We can fit a given string to a given format with the scan string format varName
?varName varName…? command, and fill in the variants according to this.

string We can use the string match pattern string command to pattern matching, with
that we can match a glob-styled pattern. The glob pattern may contain ”* ” and ”? ” characters, that
can be defined, as usual. Any of the given characters placed between rectangular brackets can be
matched to the character, e.g. the ”[ch] ” pattern to the ”c”, or to the ”h”, while the ”[a-z] ” pattern
matches to every small letters. Special definition of the mentioned characters can be resolved with the
”\ ” sign.

We can match with UNIX regular expressions with the regex and regsub commands. See further
details in the online description.

2.9. Maintenance of files and processes

File handling operations used in C can also be found in Tcl.

open A file can be opened with the open name ?access? command. Value of the access can
be r, r+, w, w+, or a+, it gives the opening method of the file. The open returns with a file
identifier, with that we can refer to the file during the further operations.

gets We can read an opened file line by line with the help of the gets fileId ?varName?
command. If the varName parameter is given, then the read string is placed to this variant (without
a new line sign), and number of the read characters is returned (it is -1 in case of the end of the file).
If the varName is not given, then the string itself is returned.

puts We can write line by line with the help of the puts ?-nonewline? ?fileId?
string command. If there is no file identifier, the it writes to the stdout, and the automatc
displaying of the new line character can be put down by giving the –nonewline option.

seek Positioning within a file can be executed with the seek fileId offset ?origin?
command. Compared to the origin (which can be start, current or end – the default is
the start) the next reading will start at the byte given by the offset.

tell, eof Actual position is provided by the tell fileId command. In case of the end of the file
the command returns with 1.

glob, file We can obtain information from the files of the actual diretory with the help of glob and
file commands.

cd, pwd Usage of cd and pwd commands is equal to the ones corresponding to UNIX.

flush, close The output buffer can be cleared out with the flush fileId command. We must
close the opened files with the close fileId command (it will result also a flush operation).

exec UNIX processes can be started from Tcl program, and there is also a possibility for using
pipelines. They are processes, that can be started with the exec command, where it is possible to make
standard 1/O redirections (<, <<, >, |) and background runnings (&). For opening a pipeline we can

use the open command, and the filename must begin with the | sign in cases like this.

pid We can query the UNIX process identifier of the actual process or the opened pipeline with the
pid command. UNIX environmental variants can be found in the env built-in array.

exit The exit command can be used for exiting from the process with giving the exit status.

2.10. Other Tcl commands

Tcl interpreter provides a possibility for the query and modification of its own inner state.

array, info The array command returns size of the associative arrays, identifiers of their elements,
etc. We can query names of the existing global and local variants, names of processes, their
parametering, bodies, names of commands, version number of the interpreter with the help of the
info command. The info and array commands contain several subcommands – see also the
online description.

trace Usage of Tcl variants can also be traced from the program, with the help of the trace
command. We can assign a process to every variants, which is called, when the given event happens.
This event could be reading, modification or elimination. See also trace(n).

rename Commands can be renamed optionally, or deleted with the help of the rename command.

unknown Usage of the unknown command is a special possibility. This command is executed,
when the interpreter cannot find a command. We can modify the original command with the
definition of a new unknown process. The following example allows the abbreviated usage of the
commands, until the unambiguity allows it.

 proc unknown {name args} {
 set cmds [info commands $name*]
 if {[llength $cmds] ! = 1} {
 error ”unknown command \”$name\” ”
 }
 uplevel $cmds $args
 }

6. Appendix

In order to run tclsh and wish, or to reach on-line manual the following environmental
variables must be set:

 PATH /usr/local/bin:$PATH
 MANPATH /usr/local/man
 TCL_LIBRARY /usr/local/lib/tcl
 TK_LIBRARY /usr/local/lib/tk

The environmental variables can set in csh and tcsh shells with

 setenv variable value

command, in sh, bash, ksh, zsh shells with

 variable=value; export variable

command.

In order to include Tcl interpreter in C program codes we have libtcl.a function library in the
/usr/local/lib directory, which contains the whole interpreter, and tcl.h header file in
the /usr/local/includes directory, which contains the necessary definitions.
Instead of futher comments let we look the following C program code which execute a Tcl program
given in the command line.
(As a matter of curiosity we should remark, that even the tclsh and the wish programs are not
much longer than this.)
 #include <stdio.h>
 #include <tcl.h>
 main(int argc, char *argv[]) {
 Tcl_Interp *interp;
 int code;
 if (argc != 2) {
 fprintf(stderr, "Wrong # arguments: ");
 fprintf(stderr, "should be \"%s fileName\"\n",
 argv[0]);
 exit(1);
 }
 interp = Tcl_CreateInterp();
 code = Tcl_EvalFile(interp, argv[1]);
 if (*interp->result != 0) {
 printf("%s\n", interp->result);
 }
 if (code != TCL_OK) {
 exit(1);
 }
 exit(0);
 }

