Tcl/Tk

Measurement guide

written by Balazs Gaal

1.Introduction

1.1.Review

Tcl and Tk are two program packets, that help running and developing X-Windows based graphic user
surface in UNIX environment. (There is also an experimental implementation for MS-Windows.) This
guide provides a short review about the Tcl language, basis of Tk, and it will demonstrate an expansion
as an example, with that we can realize a network communication with the help of Tcp/IP sockets.
This description assumes a minimal precognition of UNIX, X-Windows, and TCP/IP.

Tcl (Tool Command Language) is a high-level ,,script” language based on a simple interpreter, which
can be compared mostly to per/ language, or to the UNIX C-She// script. Variants, arrays, controlling
structures, processes can be used in it. One of its most important features, that a Te/ znterpreter written
as a C function can be built in any kind of C or C++ user programs, thus basic functions of Tcl can be
expanded. We will take the 7.3. version as a basis in this description.

Tk (ToolKit) is an expansion like this, with that we can generate a Mo#f user surface with the help of
the built-in commands. Almost every task can be solved with it during a more shorter time, than it
would be programmed merely in C. Further, Tk program is more transparent and can be modified
more flexibly. We will demonstrate shortly possibilities of the 3.6. version.

Tel-DP (Distributed Programming) is an expansion, that can be given to Tcl and Tk, which supports a
distributed object-oriented programming, remote process calling, and TCP/IP socket communication.
Later we will talk about some commands of the 3.2 version.

There are four main advantages of Tcl/Tk:

A user C or C++ program may contain a Tcl or Tk interpreter together with its built-in
commands, we must write only new commands necessary to the application in C language. We
have function directories for this, that can be simply embedded and provide many convenient
functions.

A very fast development cycle. Since it is at higher level, than C language, after a short learning
we can generate graphic surfaces of full value. Size of code and developing time are minimum
the tenth of, if the program would have been made in C, with the help of Xz#/Motf toolkit.
Since the language is interpreted, code can be modified without retranslation and reset, thus
trying the new ideas and improvement of failures can be made very quickly. That is why
execution is naturally slower, than it would be translated program, but it cannot be noticed at
the performance of the today's workstations. If the deceleration cannot be permitted, then the
critical parts can easily be written to C.

Tcl is an ideal language for realizing a communication among programs, because the interpreter
can be embedded into every program. Programs may send Tcl scripts to each other, in that
there are not only programs, but also variants, and controlling structures. We have only to
implement commands in the program, all the other issues are solved by Tcl.

Because of transparency of language the basic conception can be learnt quickly, and it is
enough to learn only the new command at expansion.

1.2. Signs

Commands, that must be written accurately, would be signed with a di fferent font type

(Courier, actually). Eg:

set a hello
b hell o

AP sigh means the answer in case of a normal recurrence value. A yis sigh means the wrong
recurrence value. E.g:

set a hello 23
/£ wong # args: should be ,set varNane ?newval ue?”

At description of Tcl commands italic letters sign the formal parameters, optional parameters are
between question marks, and ... signs repeteition. E.Q.:

set var Nane ?newval ue?
unset var Nane ?var Nane var Nane...?

1.3.Usage

We can work with Tcl and Tk interpreters in two ways:

Interactively - commands written from the terminal are executed immediately then, and result
is displayed to the monitor. Thus it is easy to try things, to make experiments. Most of these
examples listed in this description can be tried on the simplest and on the most spectacular way.

On the non-interactive way — interpreter executes then a Tcl script stored in a file
tclsh We can start an intepreter interactively with writing a

tcl sh

command in. (Sets necessary for running the program are contained by the appendix in a UNIX
environment.) We will get a % prompt in the next line, which means, that the interpreter has
received the commands. The t €l Sh (T¢/ Shell) is actually a UNIX Shell (like Sh or csh), so it
is applicable for running external programs as well.

wish Interpreter of Tk is the W Sh (Windowing Shell). Operation of the Wi Sh is the same as the
operation of the t €l Sh, but it displays a window by starting, which will be the base of the
graphic surface.
In a non-interactive way, for example, we can run a tcl script saved to af 00. t cl file with a

tclsh foo.tcl

command. In case of the M Sh we have to apply the
wi sh -f foo.tcl

command.

The Tcl script file can be executed even in itself (in a Unix environment), if we have an
execution right to the file (it is available with the chnmod a+x f o00.tcl command), and the

tirst line of the file is the following:
#!'/usr/ 1 ocal/ bin/tcl sh

or in case of aw Sh
#! /usr/local/bin/wish -f
Both programs contain the Tcl-DP expansion.

man There is a full online description about t ¢l sh, W sh and every Tcl/Tk command, a so-
called manual page, which can be seen with the help of the a command called

man conmnand.

The online manual is distributed into chapters, and in the text t €l Sh command of chapter 1.
is signed with, for example, t ¢l sh('1).

For sake of an easier orientation, commands are highlighted on the left side of the page, and
there are some reference cards, as an enclosement.

2. Tcl language

This chapter summarizes basics of the Tcl language, including syntax and a brief description of the
commands, illustrated with examples.

2.1 Syntax of the Tcl language

Tcl script consists of one or more new lines, or commands separated with semicolons.

Every command consists of one or more words, where the first word is the name of the command, and
words following the first word are the arguments of the command. Words are separated from each
other with spaces or tabulator signs. A command may consist of any number of words. Signs
separating words or commands from each other are not parts of any of the words.

Every command can be evaluated in two steps. As a first step, interpreter disintegrates the command
into words, and makes the replacements. This step is the same in case of any commands, and it is made
by the parser. As a second step, it executes command designated by the first word, transmitting all the
other words, as an argument.

There are three replacements possible during the analysis:

1.Variant substitution

Substitutiont of variants can be obtained with application of the § sign. The § sign can be everywhere
within the world, and a valid variant name has to go after it. The effect of it results the substitution of

the value of the variant in the word. E.g::

set inches 12
expr $inches*2.54

p 30.48

The first command fills word ,,12” to the variant named inches. By analysing the second command, the
»dinches” is replaced with ,,127, thus by the execution the , €xpr 12*2. 54" command will be
executed, obtaining result of ,, 30. 48 .

In some cases we can use form of ${ var Nane} for sake of clarity.
2. Command substitution

A word placed between rectangular brackets is evaluated as a command, and its return value will be
substituted. The word within the brackets must be a valid Tcl script. E.g.:

set inches 12
set nm [expr $i nches*2. 54]

P 30.48

The second set command can only ,,see” the ,, 30. 48” word during the execution.

3. Backslash substitution

»

This substitution can be used for placing special characters — e.g ,,$7, ,,[, ,, 5 7, spaces and new line
signs in a word. We can use all the escape sequences recorded in ANST C (\n — new line, \t tab, \\ - \etc.)
E.g.:

set msg O ock\type\ 6342\ nPrice:\ \$19.99
P dock type 6342
P Price: $19.99

The backslash — new line sequence can be used for paginating long lines. E.g;:

set thisisaveryl ongvari abl enane \
val ue

Paginated line must begin with a space or a tabulator sign, and pagination is considered to be a division.
We have a possibility for asking in another way the parser for guoting. It can be obtained in two ways:
1.With quotation marks

A series of character placed between quotation marks is considered to be a word, regardless if it is a

space, a tab, a new line, etc. Substitutions of variants, commands, and backslashes are executed int he
same way, as in another case. Quotation mark is not a part of the word. E.g

set msg O ock\type\ 6342\ nPrice:\ \$19.99
and

set nmsg ,Cl ock type 6342
Price: \$19.99

can obtain the same result, as in the previous case.

2. With curly brackets

Parser does not execute any substitutions among curly brackets. (Except the backslash — new line
sequence.)

set nsg {C ock\type\ 6342\ nPrice:\ \$19. 99}
P Clock type 6342\ nPrice:\$19. 99

The most important usage of curly brackets is the delayed evaluation. For example, calculation of value
of 5!is the following:

set result 1
set i 5
while {$i > 0} {
set result [expr $result*$i]
set i [expr $i-1]
}

In the Whi | € loop always the actual value of variants will be substituted because of cutly brackets.

We can write notifications after the # sign placed to the beginning of the line — more exactly, to a place,
where the first character of the command will be placed. A # sign placed to another place does not
mean any notifications, parser considers itt o a common character.

We must note two important rules in connection with substitutions:
1. Analysis must be executed in one pass, from left to right. Each and every character is read
exactly once.
2. At most only a onefold substitution happens to the individual characters, and the substituted

value will not be used during the further substitutions.

The following example illustrates it:

set x 1
set a x
set b $%a

Value of b variant will be ,,$X”, since substitution is executed only once.
One of the consequences of these rules, that in
set city ,Los Angel es”
set bigCty $city
script the second command is executed correctly, because value of the Ci t'Yy variant is substituted, as a
word.

It is sometimes a not required behaviour. For example, the next command can be wrong:

exec rm[glob *. 0]

A rrm a.o b.o c.o nonexi stent

The gl ob command returns filenames fitting to the sample, and the @€X€C command tries to execute
the r MUNIX command in a returned ,,a. 0 b0. €0.” filename, which does not exist. For the right
operation it would be necessary to disintegrate to value returned by gl 0b. This second analysis can be
forced by the eval command:

eval exec rm|[glob *.0]

2.2. Variants

Simple variants have one name and one value. Variant names and values can be optional character series
in Tcl. There are no types of variants, every value is stored as a string. Assignment of variant is
dynamic, it can be prepared and deleted any time.

Variants can be prepared, modified and read with the set var Name ?val ue? command. If
val ue is given, then var Name variant takes the value of val ue. Return value is the new value of
the variant in any case.

We can use associative arrays besides simple variants. An array is the collection of elements, which are
variants, too, with their own names and values. E.g.:

set uid (root) 1000

P 1000

set uid(guest) 200
P 200

set uid (root)
P 1000

It is not necessary to declare arrays in advance, their element number can be changed optionally.
Substitution of variants can be used in case of arrays, too:

set | ogin guest
set a [expr $uid($l ogin)+1]
p 201

unset Variants, array elements, or whole arrays can be deleted with the help of the unset command:

unset |login
unset uid (guest)
unset uid

incr Value of variants with a whole value can increase with the i ncr var nane ?i ncr ement ?
command, with an | NCr ement value, or, if it is not given, then with one.

append The append var Nane val ue ?val ue... ? command places values of val ue after
value of the variant.

2.3. Expressions

expr The expr arg ?arg...? command evaluates expression given by its arguments and the
result will be the return value.

Syntax of numeric values is the same as the ones defined in ANSI DC (decimal, octal,
hexadecimal, float). Every ANSI C operator and large amount of numeric functions can be
used with their usual features, with a surplus, that the relation oprators can also be applied for
strings.

Arguments of different types are converted automatically, but an explicit conversion is also
possible with doubl e, i nt and round functions. See in details in the expr(z) online
description.

2.4. Lists

We call list an arranged group of elements in Tcl. Elements of the list are divided from each other with
a space, or a tabulator position:

Appl e Orange Strawberry Lenon

lindex The | i ndex [ist index returns the element of the given list. Indexing of elements
starts from 0.

i ndex (Apple Orange Strawberry Lenon)l
P Orange

Lists occurring in commands are usually between curly brackets, since they generate a word, but
brackets are not parts of the list:

set fruits {Apple Orange Strawberry Lenon}
P Apple Orange Strawberry Lenon

Elements of lists can also be lists:

lindex {a b {c de e} f) 2
P cde

There are two commands, with that we can make lists. concat and | i st.

concatThe concat |ist 7?list..? concatenates list given in its arguments to a single list.

concat {a b c} {de} f {ghi}
b {abzc} {de} f {ghi}

list ‘Thelist val ue ?val ue..? considers its arguments to list elements one by one:

list {abc} de} f {ghi}
P {abzc} {de} f {ghi}

The |1 St command always returns a list with a righ format independently from its arguments,
assigning backslashes, or curly brackets, if it is necessary. In case of concat it is not guaranteed.

llength The | | engt h |i St command returns the number of the elements of the list:

[length {{abc} {de} f {ghi}}

P 4
[l ength a
P 1
[l ength {}
P 0
linsert The | i nsert |ist index value?val ue..? command returns the list, to that it

inserts the given values in front of the element with a given index (ha the index is larger, than
the number of elements, or equal with them, then it will place it to the end of the list):

linsert {{abc} {de} f {ghi}} 1 ABC
P {abc} ABC{de} f {ghi}

Ireplace The | repl ace list first |ast ?val ue val ue..? command returns the list,
from it deleted elements with f i rst and | ast indexes, and — if there are any — substituted
them with val ue parameters:

Ilreplace {{a bc} {de} f {ghi}} 22
P {abzc} {de} f {ghi}} 01 X{AB Y
P X{AB YTf {ghi}

Irange The | range |ist first |ast command returns a part of the list from the element
with f i r St index tll the element with | ast index (if | ast index is €nd, the to the end).

lrange {{a b c} {de} f {ghi}} 12

P {d e} f
lrange { ABCDETF} 2 end
P CDEF

lappend The | append var Nanme val ue ?val ue..? command fits the given list values to the
variant named var Nane:

set 1{ABCDEF}

P ABCDEF
| append 1 X {Y Z}

p ABCDEFX{Y Z}
set 1

b ABCDEFX({Y 2

The | append, as well as append, is not a definitely necessary command, since it can be built up
from another commands, but it is very efficient for long lists.

split Thesplit string ?splitChars? disintegrates the given string, and returns, as a list.

join

Divinding character(s) can be given in the Spl i t Char s argument:

set f /usr/local/lib/libtcl.a
split $f/

P {} usr local lib libtcl.a
The join list ?joinString? does its inverse:

join {{} usr local lib libtcla.} /
P Jusr/local/lib/libtcl.a

2.5.Control structures

There are two kinds of conditional commands: 1 f and sw t ch.

if

The if test1l ?t hen? bodyl ?elseif test2 ?then? body2 elseif...?
?el se? ?bodyn? command evaluates the t €St 1 expression, and if it has a non-zero
value, then it executes the body1l script, and returns its value. Otherwise it evaluates the
t est 2 expression, and if it has a non-zero value, then it executes the body2 script, and
returns its value, and so on. If none of the test were successful, then it executes the bodyn
script, and returns its value. E.g:

if {$x < 0} {
set x O
}

Expressions used at | f and the other controlling structures are worth to place between cutly
brackets, so the evaluation could happen at the right time. Every starting curly bracket must be
in the same line, as the previous word. So the following script is wrong:

if {$x < 0}
{

}

set x O

switchThe switch ?options? string pattern body ?pattern body..?

command fits the St ri Ng to every patt er n, untl it will not find a matching, and then it
executes the belonging body script, and returns. If the last pat t ern is a default, then it fits
to everything. Opt i ONS can be —exact, -gl ob, -regexp, accordingly, if we want an
exact, glob-style or regular fitting (the default is the gl 0b — see it later). The

switch $xs a {incr t1} b {incr t2} c {incr t3}

form can also be written like this:

switch $xs {
a {incr tl}
b {incr t2}

c {incr t3}
}

If the body command is ”- ” then it executes the command of the next pattern, thus we can assign
the same command to several patterns. E.g.:

switch $x {
a_
b —
c {incr tl}
d {incr t2}

default {incr t3}
}

2 2

If value of the x variant is ”a”, ”’b” or ”’c”, then it increases the value of t 1 variant, and if it is ”’d”,
then it increases the value of t 2, and in case of oher values the value of t 3 variant.

There are three cycle commands. Whi | €, for and f or each.

whileThe whi | e test body command evaluates the t €St expression, and if it is a non-zero
one, it executes the body script, and then it evaluates the expression again. It is repeated again
and again, until the evaluation will not result zero, and then it returns with an empty string. The
next script copies elements of list ato list b:

set b7 ”

set i [expr [llength $a] -1]

whi | e {$i >=0} {
| append b [lindex b [lindex $a $i]
incr i -1

}

for Thefor init test reinit body command executes the init scipt, and then evaluates
the t @St expressiion, and if it is a non-zero one, then executes the body script, and then the
reinit script, and it evaluates again the expression. It is repeated again and again, until the
evaluation will not result zero, and then it returns with an empty string. The previous example
realized with f Or will be the following:

set b " ”
for {set i expr [llength $a]-1]} {$i>=0} \
{incr i -1} {lappend b [lindex $a $i]}

foreach The f or each var Nane |i st body command sets the variant named var Nane to
every element of the given list in sequence, and executes the body script. It makes easy the
process of lists. Realization of the previous example with the help of the f or each will be the
following:

set b " ”
foreach i $af

set b[linsert $b 0 $i]
}

We can also use br eak and cont i nue commands, that are usual in C.

break The br eak interrupts execution of the innermost cycle.
continue The cont i nue leaps immediately to the next iteration of the innermost cycle.

eval ‘Theeval arg ?arg..? can generally be used for generation and execution of command
scripts.
One of its applications is the execution of commands stored in variants:

set cnd "set x 0"
eval $ cnd

Another important application is the second analysis, which we have already seen earlier.

source The sour ce fil eNanme command reads and executes the given script file.
2.6. Processes

There are processes in Tcl, that can be parametered in many ways, and can be defined with a return
value.

proc The proc nanme arglist body command generates a process named as NaNMe, with a
list of parameters, listed in ar gl i st, with a body. E.g.

proc add {a b} {expr $a+3$b}
add 12 4

b 16
add 3

A no value given for paraneter "b” to ,plus”

return Return value of process is the return value of the last command. Using the return
command we can return immediately with the given value.

global By evaluating the body of the process, the emergent variants are automatically local. We can
obtain global variants with the gl obal nanmel ?nanme2.. ? command.

There is a possibility for the default of the parameter. If the argument is not given by calling, the

process uses the default. If there is a default set to a parameter, then all the following parameters must
be like this. E.g.:

proc inc {value {increment 1}} {
expr S$val ue+$i ncr enent
}

inc 23 4

b 27
i nc 62

P 63

If the last element of the argument is ar gs, then parameter with alternate numbers can be
transmitted by calling. The ar gs list will contain the parameters (which can even be an empty list).
E.g:

proc sum args {

set s O
foreach |I $args {
incr s $I

}

return $s

}
suml 2 345

P 15
sum
P 0

Within the process variants of the calling process can be available in another way beyond the
gl obal command. Variants of the optional calling levels are available with upvar and upl evel
commands. See the online description for further information.

2.7 Error handling

If an error occurs during the execution of a command, then running of the program is interrupted,
and an error message is displayed. We can get further information about the error in a global variant
named error | nf o.

catch It would be necessary to handle errors within the program. We can use the cat ch
command ?var Name? command, that executes the given command, and places its result (or an
error message in case of an error) to the variant named var Name. Return value of the cat ch
command will be the return error code of the command (it will be 0 in case of a successfully
executed command).

error We can return from this process with the error nessage ?info? ?code?
command, where the Message is an error message, the i Nf 0 is the value of the errorlnfo
variant, and the code is the return error code (its value is usually 1).

2.8. Maintenance of strings

string There are many string operation programs in Tcl. Many of them are realized by the St ri ng
command. This command has numerous subcommands. For example, string index and
string range commands solve the same tasks on strings, as on the | i ndex and | r ange lists.
The string first stringl string2,and thestring last stringl string2
commands search for Stringl in String2 from the left and from the right. In function of
string conpar e it corresponds to the strcmp () C function.

format Formatted strings can be prepared with the help of the format format String

?val ue val ue..? command, which can be used on the same way, as ANSI C sprintf ()
function.

scan We can fit a given St i NQ to a given format with the scan string format var Name
?var Nanme var Nane..? command, and fill in the variants according to this.

string We can use the String match pattern string command to pattern matching, with
that we can match a glob-styled pattern. The glob pattern may contain ”* ” and ”? ” characters, that
can be defined, as usual. Any of the given characters placed between rectangular brackets can be

matched to the character, e.g. the ”[ch] 7 pattern to the ”c”, or to the ”h”, while the ”[a-z] 7 pattern
matches to every small letters. Special definition of the mentioned characters can be resolved with the

”\ ” Slgﬂ

We can match with UNIX regular expressions with the I egex and r egsub commands. See further
details in the online description.

2.9. Maintenance of files and processes

File handling operations used in C can also be found in Tcl.

open A file can be opened with the open hane ?access? command. Value of the acCess can
ber, r+, w, W, orat, itgives the opening method of the file. The open returns with a file
identifier, with that we can refer to the file during the further operations.

gets We can read an opened file line by line with the help of the gets fileld ?var Name?
command. If the var Nanme parameter is given, then the read string is placed to this variant (without
a new line sign), and number of the read characters is returned (it is -1 in case of the end of the file).
If the var Name is not given, then the string itself is returned.

puts We can write line by line with the help of the puts ?-nonewline? ?fileld?
St ri ng command. If there is no file identifier, the it writes to the St dout , and the automatc
displaying of the new line character can be put down by giving the —nonewl i ne option.

seek Positioning within a file can be executed with the seek fileld offset ?origin?
command. Compared to the Or i gi N (which can be start, current or end — the default is
the start) the next reading will start at the byte given by the Of f set .

tell, eof Actual position is provided by the t el | fi | el d command. In case of the end of the file
the command returns with 1.

glob, file We can obtain information from the files of the actual diretory with the help of gl ob and
fil e commands.

cd, pwd Usage of €¢d and pwd commands is equal to the ones corresponding to UNIX.

flush, close The output buffer can be cleared out with the fl ush fil el d command. We must
close the opened files with the cl ose fil el d command (it will result also a flush operation).

exec UNIX processes can be started from Tcl program, and there is also a possibility for using
pipelines. They are processes, that can be started with the €X€C command, where it is possible to make
standard 1/0 redirections (<, <<, >, |) and background runnings (&). For opening a pipeline we can

use the OpeNn command, and the filename must begin with the | sign in cases like this.

pid We can query the UNILX process identifier of the actual process or the opened pipeline with the
pi d command. UNIX environmental variants can be found in the €nV built-in array.

exit The eXi t command can be used for exiting from the process with giving the exit status.
2.10. Other Tcl commands

Tcl interpreter provides a possibility for the query and modification of its own inner state.

array, info The ar r ay command returns size of the associative arrays, identifiers of their elements,
etc. We can query names of the existing global and local variants, names of processes, their
parametering, bodies, names of commands, version number of the interpreter with the help of the
I Nnf 0 command. The i Nf 0 and arr ay commands contain several subcommands — see also the
online description.

trace Usage of Tcl variants can also be traced from the program, with the help of the trace
command. We can assign a process to every variants, which is called, when the given event happens.
This event could be reading, modification or elimination. See also #ace(n).

rename Commands can be renamed optionally, or deleted with the help of the r enan®e command.

unknown Usage of the unknown command is a special possibility. This command is executed,
when the interpreter cannot find a command. We can modify the original command with the
definition of a new UNKNOWN process. The following example allows the abbreviated usage of the
commands, until the unambiguity allows it.

proc unknown {name args} {
set cnds [info commands $nane*]
if {[lIlength $crmds] ! = 1} {
error "unknown conmand \” $nane\”
}

upl evel $cnds $args

6. Appendix

Inordertorunt cl sh andw sh, or to reach on-line manual the following environmental
variables must be set:

PATH / usr/ 1 ocal / bi n: $PATH
MANPATH /usr /| ocal / nan

TCL_LIBRARY /usr/local/lib/tcl
TK_LI BRARY /usr/local /lib/tk

The environmental variablescan setincsh andt csh shellswith

setenv vari abl e val ue

command, insh, bash, ksh, zsh shellswith
vari abl e=val ue; export variable
command.

In order to include Tcl interpreter in C program codeswe havel i bt cl . a function library in the
/usr/1ocal/lib directory, which contains the whole interpreter, andt cl . h header filein
the/ usr/1 ocal /i ncl udes directory, which contains the necessary definitions.
Instead of futher comments let we look the following C program code which execute a Tcl program
given in the command line.
(Asamatter of curiosity we should remark, that eventhet cl sh andthewi sh programs are not
much longer than this.)
#i ncl ude <stdio. h>
#i ncl ude <tcl . h>
mai n(int argc, char *argv[]) {
Tcl _Interp *interp;
I nt code;
if (argc !'= 2) {
fprintf(stderr, "Wong # argunents: ");
fprintf(stderr, "should be \"% fil eNanme\"\n",
argv[0]);
exit(1l);
}
interp = Tcl _Createlnterp();
code = Tcl _EvalFile(interp, argv[1]);
I f (*interp->result !'= 0) {
printf("%\n", interp->result);

If (code '= TCL_OK) {
exit(1l);
}

exit(0);

