
 - 1 - 

Dialog planning in VoiceXML 
 

Csapó Tamás Gábor <csapot AT tmit.bme.hu> 

Tarján Balázs 

 

4 January 2011 

 

1. Theoretical introduction 
 

The measurement is designed to familiarize students with the opportunities offered by the 

VoiceXML programming language. VoiceXML is a standard markup language, which is 

designed to facilitate and accelerate development of speech-driven human-computer 

dialogues. VoiceXML is based on similar principles than the HTML language, but the former 

describes speech and the latter defines the display of visual contents. 

This introduction briefly describes the basics of dialog planning, speech synthesis and speech 

recognition, which are required to carry out the measurement. 

 

1.1 Dialog systems 

 

The goal of the dialogue systems is to assist the proper functioning of human-machine 

interfaces using speech technology devices. To create a dialogue-based system, a 

development environment is needed with which the task best suited to the requirements of 

the dialogue system can be created. The system supports the integration of speech 

generator (also known as speech synthesis) and robust speech recognition engines [1]. 

 

1.1 Speech synthesis 

 

Speech synthesis is nothing more than production of human-like speech in an artificial 

manner, typically using a computer. If the input is written text, it is called Text-To-Speech 

(or TTS, briefly). This text is converted through various steps to human-like speech, as 

shown in Fig 1. In general, these steps are the text-to-text processing of the input, 

preparation of the synthesis and the creation of speech [2]. An intermediate step in this 

process is the design of prosody, which means that the melody, rhythm, emphasis, type and 

position of stress are assigned to the text. To determine these, only the input text is 

available, which makes this step difficult. After the preparation, the speech synthesizer 

generates the output speech from the marked input data. 
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Fig 1. Scheme of a general Text-To-Speech system. The operation consists of two 

main steps: creation of symbolic information based on the input text (left side), 

which is the basis of synthesizing the waveform (right side). Source: [2, page 

303]. 

 

Next, the different generations of speech synthesizers are introduced [3, 4]. 

 

1.1.1 Formant synthesis 

 

Formant synthesis was the first technology that allowed automatic conversion of text into 

intelligible speech. The system tries to model human speech formants to create phones. The 

sound of such systems is rather "robotic", so they are rarely used today.
 

 

1.1.2 Concatenative synthesis 

 

In concatenative speech synthesis, speech waveform elements cut-out from natural speech 

are concatenated. Previous experiments have shown that the intelligibility of sound 

transitions (not the speech sounds themselves) are responsible for the perceived 

naturalness of synthetic speech. Therefore the proper modeling of sound transitions is 

extremely important. Concatenative systems are distinguished depending on the size of 

elements used. Of course, this also affects the number of elements needed: while for the 

Hungarian diphone synthesis 382 = 1444 elements required, from triphone elements 383 = 

54,872 elements would be needed. In practice, using the complete diphone coverage and 

the 1000-2000 most common triphone elements good quality can be achieved. 
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Fig 2. Concatenation of diphones (sound transitions): from „bu” and „us” the word 

„bus” arises. 

Source: based on [5]. 

 

1.1.3 Corpus based, unit selection synthesis 

 

The improvement of the concatenation is the unit selection speech synthesis technology. The 

novelty here is first, that a larger corpus (speech database) is available, in which an item 

can occur several times, in different forms. On the other hand, these elements are longer: 

words or phrases are possible as well. 

While creating the speech output, the system is looking for longer elements of the corpus 

which match the input text. The elements are longer compared to the diphone and triphone 

systems, reducing the number of concatenation points in the produced speech. Since a given 

speech unit may occur in different forms within the corpus (different melody, intensity), the 

quality of synthesized speech can be improved by choosing the most natural ones. However, 

the quality of the system is also affected by how close the input text and the topic of the 

speech corpus are to each other. 

 

 

1.1.4 Hidden Markov Model based speech synthesis 

 

The statistical, Hidden Markov Model (HMM) based speech synthesis systems have become 

increasingly popular in recent years (e.g. HTS [6]). The main limit of the unit selection 

systems is that they use natural speech samples. Thus, for different voices (people, 

speaking styles) it is necessary to record a huge database, the production of which is quite 

costly. 
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In contrast, to this new technology a sort of training corpus is enough, of which the system 

generates context-sensitive HMM output, and the output waveform is generated based on 

these. The training is similar to the speech recognition (since HMM-s were originally used for 

this technology), and the waveform is the result of the synthesis. This method allows the 

modeling of different people, emotions with appropriate modification of HMM parameters. 

This technology is not yet fully mature, and a strong research and development is taking 

place in the field of statistical-based TTS-s.
 

 

1.1.5 Comparison of speech synthesis technologies 

 

  Pros Cons 

Formant synthesis small footprint “robotic” voice, lots of 
parameters 

Concatenation small footprint, prosody easily 

modifiable 

distortion caused by signal 

processing 

Unit selection nearly natural large storage requirements, 
prosody hardly modifiable 

Hidden Markov 

model 

technology used in speech 

recognition 

slow training 

 

Table 1: Comparison of speech synthesis technologies 

 

Speech synthesizers have gradually changed over the past 25 years. From the simplest 

models we reached the technologies applying complex models, as summarized in Table 1. 

The formant synthesizers can create “robotic” voice, while using little resources. While the 

diphone-triphone systems use small databases, they are able to produce human-like speech. 

Using the corpus-based unit selection speech synthesis almost entirely natural speech can 

be produced. The latest, hidden Markov model-based systems have small memory 

requirements and even so good quality can be synthesized. 

 

During the measurement, the Profivox Text-To-Speech synthesizer developed in BME TMIT is 

used [7]. The Profivox is a Hungarian speech synthesizer, which has 1444 diphone and 6000 

CVC-triphone elements. The system has several speech styles, of which we use a male 

voice. 
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1.2 Speech recognition 

 
The purpose of the Automatic Speech Recognition (ASR) is to convert the acoustic speech 

signal to text, doing essentially the inverse process of speech synthesis. The recognition is 

usually divided into two distinct phases. The first phase is a signal processing step called 

feature extraction, in which the feature parameters that characterize the content of the 

speech are extracted. In the second so-called pattern matching phase the previously 

received parameter vectors are fitted with a stored model of the language.  As a result of 

the process, the word or word sequence that best matches the input speech is the output of 

speech recognition [8, 9]. 

 

1.2.1 Feature extraction 

 

Human speech signal is very complex, so a complex processing is required for the extraction 

of the parameters that characterize the contents of speech. 

 

Fig 3. Process of feature extraction. 

 

The signal processing is done on digital speech signal, for which the time function of speech 

is sampled (~ 8-22 kHz) and quantized (8 bits, 16 bits) depending on the task. In the first 

step, the digitized signal is split into sections that fit to the duration of human speech 

sounds (10-30ms), by interlaced window functions (e.g. Hamming). According to our 

knowledge, the human ear carries out harmonic vibration analysis, so it is obvious to treat 

the problem in frequency domain. In windowed blocks the signal is considered as periodic, 

and spectra can be obtained by FFT (Fast Fourier Transform) algorithm. Several methods 

exist for the calculation of feature vectors from spectral components. Here, the calculation of 

the most widely used Mel Frequency Cepstral Coefficients (MFCC) is shown briefly.
 

 

 
Fig 4. Calculation of MFCC spectral envelope. 

 

To extract more concise features, the FFT spectrum components are averaged. An important 

characteristic of the human hearing is that the frequency resolution decreases exponentially 

with increasing the frequency. As a consequence, in the mel-scale averaging that is applied 

on the spectral components the width of the summarizing window is exponentially increased 

above 1 kHz, thus compensating the smaller information density. From the mel-sum of the 

components power spectrum is calculated from noise suppression consideration, and the 

resulting values are logarithmized according to the often observed relation between the 

stimulus and feeling. The following step is the DCT (Discrete Cosine Transform), a process 

that serves to reduce the dimension of the feature vector. The final step is assigning the 

linear regression estimated time derivatives (Delta and Delta-Delta) to the static elements. 
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The latter greatly improves the efficiency of feature extraction. In addition, the feature 

extractor may contain a number of items (noise and distortion reduction), but these are not 

discussed here in detail. 

The feature extraction is a signal processing step, which creates  standardized, discrete-time 

signal from continuous speech.
 

1.2.2 Pattern matching  

 

The task of pattern matching is to map a feature vector sequence to a dictionary item or 

sequence of dictionary items (isolated word vs. continuous recognition). Today, most widely 

statistical based recognizers are used where the vector sequences are fitted to a HMM-

based probabilistic model structure that is estimated based on training data. This model can 

be divided into several hierarchical levels (acoustic models, language models), each of which 

can be interpreted as Weighted Finite State Transducers (WFST) [10]. The WFST-s can be 

derived from the Finite State Automatons (FSA) with weights placed on the edges (transition 

probabilities) and extended with output symbols. So they are suitable to process the labels 

which come from different levels of hierarchy from the bottom to up. The outcomes of the 

process of pattern matching are the output labels of the top model (language model) and 

their timestamps, which belong to the best fitting route. 

Acoustic model 

In the full recognition network usually three acoustic layers are distinguished, however, 

these can be seen together as a WFST converting only one feature vector sequence to 

phoneme sequence. The training of the acoustic model is done on labeled speech database. 

Based on the available training speech and its textual transcript we estimate the conditional 

distribution of the feature vectors for the spoken phonemes. With the resulting statistical 

model we can give an estimate to the measure of acoustical match between a feature 

vectore sequence and phoneme sequence. 

Language model 

The language model defines how and to what probability the dictionary elements of the 

recognizer can be linked. The structure of a language model is mainly determined by the 

intended task of the recognition system. In isolated word recognition usually a parallel 

structure is used, where we can pass through each lexical item with the same probability 

during the pattern matching. In such cases, the weight provided by acoustic model is the 

basis of our decision (Fig. 5). In contrast when continuous speech is recognized, the 

probability of connecting lexical items is estimated based on training text. This much more 

complex model structure leads to an opportunity to prevent the uncertainties in the 

estimation of acoustic model. The WFST created by combining language and acoustic models 

is called the recognition network. 
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Fig 5. Scheme of the language model of an isolated word recognizer 
(“sil” is the pause model) 
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Decoding 

The process of pattern matching can be interpreted as searching for an optimal route in the 

recognition network, driven by the feature vectors. Since the exhaustive search would be 

too complex computationally, in practice the dynamic programming-based Viterbi algorithm 

is widely used, which can determine the best route to each moment. In addition, to further 

accelerate the process; from time to time less probably routes can be pruned. 

 

During the measurement, the VOXerver WFST-based speech recognizer developed at BME 

TMIT will be used for the speech recognition tasks.  
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