

INTRODUCTION TO THE USAGE OF NETWORK SIMULATOR

(measurement guide)

Department of Telecommunication and Mediainformatics

Compiled by Felicián Németh (nemethf@tmit.bme.hu)
Revisioned by András Császár (andras.csaszar@tmit.bme.hu)

20 October, 2003.

1. Introduction

Network Simulator is a discrete event-controlled, packet-levelled network simulator,
which is supported by numerous universities and research institutes; its resource code is
freely available1. There is a possibility among others for examination of route selector,
multicast or a TCP protocol even in cases of wireless networks with the help of this
program.

The ns was written in C++ and otcl language. Kernel of the simulator, implementation
of protocols, and tasks requiring a large calculation were realized in C++ language, but the
otcl script language is used for giving the simulation configuration, and for solving simple
tasks, which do not require a great efficiency.

Object hierachy of the system is thoroughly deliberated, new functionality can be fitted
to the system easily in a C++ environment, but we will not deal with it in this preliminary
measurement. So the aim of the measurement is to foreshow the basics of the otcl surface,
and to support the learning of some simple network simulation testing methods.

The ns program can actually be considered, as a tcl interpreter with an object-oriented
expansion, from which the class hierarchy supporting the network simulation is available.

As a first step of the simulation, we have to prepare an (o)tcl script, which defines the
network components, their connection, and timing of the previously given events (e.g.
beginning of the transmission of a data source). After that, we have to call the ns program
with the script („ns program.tcl”), which generates the recording in the output files, and
the simulation results. We can analyse the simulation results during the additional
processing with the help of awk, perl, gnuplot, excel, etc. programs. Fort he visual analysis
of results we can call the nam (Network Animator) program with a recording file with a
special format, which demonstrates graphically the way of the individual packets.

1 See also: http://www.isi.edu/nsnam

mailto:nemethf@tmit.bme.hu
mailto:andras.csaszar@tmit.bme.hu
http://www.isi.edu/nsnam

2.Tcl basics

Although a debate flared up over time, whether the Tcl language is efficient enough, as
a script language expansion of C programs2, or not, we can say, that it has achieved its
purpose in the ns system: it provides a fast development with simple, clear linguistic
elements. We can read in this chapter a brief description of the language, with no aim to be
comprehensive, which provides nevertheless enough knowledge to the execution of
measuring tasks.

Commands of a Tcl script are divided from each other with a new row, or a semicolon.
Commands consist of one or several words, where the first word is the name of the
command, and words, that may follow it, are the arguments of the command. Words are
divided from each other with spaces, or with tabulator signs.

By evaluating a command, the interpreter divides the command, as a first step, into
words, and executes the incidental replacements, and then executes the command with the
given arguments. The $variantname is replaced with the value of the variant, while
applying the [command], the return value of the given command will be replaced.
Variants have no types, they all stored as a string.

We can read a more detailed description from the language in the Tcl/Tk measurement
guide3 of our Department, which is necessary and expected to know at the beginning of the
measurement.

There are some basic Tcl linguistic elements in the script calculating the 10! value:

 1: set fakt 1
 2: for {set i I} {$i <= 10} {incr i} {
 3: set fakt [expr $fakt*$i]
 4: }
 5: puts $fakt

Program 1. Tcl script calculating the 10 factorial

We set the value of fakt variant with the help of the set command to 1 in the first row. In
the second row, in the cycle similar to the C language the curly brackets prevent the
replacement, while the command is divided into words, thus, for example, by evaluating the
kernel of the cycle variants will take always their actual value. The third row demonstrates
an example for the command replacement with rectangular brackets, where the expr
command calculates a numeric expression, and its value will be the new value of the fakt
variant, after the set assignment. Finally, display of the result will be executed by the puts
command in the last row.

We can see an example for the declaration of functions from the recoursive
modification of calculation of the factorial (see the 2. program).

2 See also: “The TCL war” http://www.vanderburg.org/Tcl/war

3 See also: http://alpha.ttt.bme.hu/pub/meresek/tcltk4_eng.pdf

http://www.vanderburg.org/Tcl/war

 0: proc faktorialis num {
 1: if {$num > 0} {
 2: return [expr $num* [faktorialis [expr $num-1]]]
 3: } else {
 4: return 1
 5: }
 6: }
 7: puts [faktorialis 10]

Program 2. A Tcl command calculating factorial

3. Otcl basics

This chapter demonstrates a simple example for the object-oriented expansion of the Tcl
object, and for the usage of the otcl language. An average ns user seldom needs to write a
new object, but it is necessary to understand the elements of the otcl language, since ns
objects can be available from the otcl by preapreing simulation scripts.

0: Class mom
1: mom instproc greet {} {
2: $self instvar age_
3: puts „$age_year old mom say: How are you doing?”
4: }

5: Class kid –superclass mom
6: kid instproc greet {} {
7: $self instvar age_
8: puts „$age_year old kid say: What’s up, dude?”
9: }
10: set a [new mom]
11: $a set age_ 45
12: set b [new kid]
13: $b seg age_ 15
14: $a greet
15: $b greet

Program 3. An Otcl example

The classic example at the homepage of ns can be read in the 3. program.

This example program defines in the 0. row class mom with keyword Class, and then it
derives class kid in the 5. row with the help of keyword –superclass. After the class
definitions the next step will be the definition of methods, using keyword instproc. In the 2.
and 7. line role of $self is the same as role of the „this” pointer in C++ language by defining
the member functions. Method named instvar declares on one hand the age_attribute
(member variable) (if it was not declared in the class, or in one of the parent classes), and
on the other hand, it provides a possibility for referring to the attribute only with a variable
name. Finally, we can instantiate a class with the new command (10. and 12. line), and
methods are called in the 14. and 15. row, which would be as follows:

45 year old mom say: How are you doing?
15 year old kid say: What’s up, dude?

4. Simulation example program

 This chapter presents a simple simulation script line by line, demonstrating basic steps
necessary for the preparation of a simulation.

A network to be simulated, as it can be seen on Figure 1, consists of four nodes (n0, n1,
n2, n3). Capacity of the duplex link between n0 and n2, and between n1 and n2 is 2 mbps,
and its delay is 10 milliseconds. Capacity of the third duplex link between n2 and n3 is 1,7
mbps, and its delay is 20 milliseconds. Every node uses a DropTail line with the capacity of
10 packets, which serves the waiting packets according to the FIFO principle, and in case of
saturation of the puffer proper for storing the 10 packets it throws the newly arrived
packets.

TCP agent connected to the n0 node generates a connection with the TCP sink agent
connected to the n3 node. TCP agent – according to the default – is able to generate only
packets of one kilobyte. It is the task of the sink to send ACK answering messages.

UDP agent connected to the n1 node communicates with the zero agent in n3. In
contrast to the TCP sink, the zero agent simply frees the memory assigned to the packet,
since in case of UDP it is not necessary to send a receipt. An ftp traffic generator is
connected to the tcp agent, while the cbr traffic generator is connected to the udp agent,
and this latter one generates a constant bit rate data flow: it sends 1 kilobyte packets with
rate of 1 Mbps. Cbr generates traffic between 0,1s and 4,5 s, and ftp starts transmission in
time of 1,0s and finishes the tranmission in time of 4,0 s.

This simulation arrangement mentioned above is realized by the Program 4.
Explanations assigned to the more instructive momentums of the program with marking of
the proper sequence number can be read below.

• 0: set ns [new simulator]: it instantiaties the ns simulator object and stores
the object reference in the ns variable. It is the beginning line of all the ns scripts,
that initiates the discrete time scheduler among others. The Simulator class is able
to execute the following tasks through its methods:

- generation of network objects (nodes, links…),
- attaching network objects (e.g. attach-agent),

- setting parameters of network elements,
- defines data connection between agents (e.g. between tcp and sink)

- control of displaying parameters of NAM.

• 1-2: $ns color fid color: it sets the color of the packets of the process
determined by the fid process identifier. This method of the Simulator object
has an effect only to the NAM display, and not to the real simulation.

• 4: $ns namtrace-all file-descriptor: this method switches on the
saving of the simulation tracing data in a NAM input format. The trace-all
method is similar to it, but it uses a general format (which is easier to be processed).

Figure 1. Network arrangement of the simple simulation

• 5: proc finish {}: command is called at the end of the simulation by the $ns
at 5.0 „finish” instruction of the 52. line. After closing the register file,
running of the simulation script will be closed with calling the NAM program.

• 12-15: set n0 [$ns node]: This method provides a possibility to the
generation of a network node.

• 16-18: $ns duplex-link node1 node2 capacity delaying line
type: it generates two simplex links with the given bandwidth and delay values,
and connets the two given nodes. It is the main feature of ns, that the output line of
the node is realized as a part of the link, so we should give the type of the ouptput
line by generating the link. If we would like to use the RED type line using the active
line management instead of the DropTail, we have to give simple that type, as the
last parameter of the method. It is important to know, that there is a possibility for
modelling even links with losses. (See further details about the useable line types and
links with losses in the documentation of ns.)

• 20-23: commands have an important role only by displaying with the NAM
program, it is worth to observe changes after commenting out the lines.

This part above defines the network topology, so the next task will be the setting of traffic
agents (TCP, UDP) and data resources (FTP, CBR), and connecting the agents to nodes and
resources.

• 24, 27, 34, 36: set tcp [new agent/TCP]:we can generate a TCP agent this
way, and we can generate any of the agents or traffic generators similarly to this
method, we only need to know the name of the class. It can be found in the
documentation of NS, however, another possibility is to read the „ns-2/tcl/libs/ns-

defaul.tcl” file. This file contains default values of network objects, and
configuration parameters, thus we can learn, what kind of simulation parameters
exist, and which are the parameters of objects to be set.

• 26, 28, 35, 37: $ns attach-agent node agent: This method of the
Simulator serves for connecting and agent to a node. Attach-agent only calls the
attach method of the given node, which connects then the given agent to itself.
For example, the „$n0 attach $tcp” command has the same effect as the 26.
line.

• 29, 38: $ns connect agent 1, agent2: after generating the two agents,
that want to communicate with each other, we have to build up a logical connection
between them; this command serves for it, that sets in agents the network- and port
address of the other agent.

After giving the network configuration, we have to define the simulation scenario, i.e. the
schedule of events given in advance. Simulator class has numerous methods in
connection with scheduling, however, the most frequently used method is the following:

• 46-52: $ns at time command: Simulator object executes with the help of its

scheduler in the given simulation time the given command. For example, it
schedules the execution of the „$cbr start” command to the 01,s of the 46.
line, i.e. it calls the start method of the $cbr data resource object, which will
start the traffic generation because of it.

After giving the network arrangement, schedules and process closing the simulation we
only have to start the simulation with $ns run command of the 55. line.

5. Process of results

Beyond visual analysis of the simulation results with the NAM displaying program,
system provides a possibility to make a register file about all the events of the way of every
packet. Every line of the register file generated by the method of Simulator trace-all4 is
related to an event in connection with a packet. Line consists of a field divided by 12 spaces,
which are the following:

1. Type and possible values of the event:
o „r” (receive): packet arrived to the target node
o „d” (drop): a line dropped the packet away
o „+” (enqueue): packet got to the queue
o „-„ (dequeue): packet went away from the queue

2. Time of the occurrence of the event (in seconds)
3. Identifier of the beginning node

4 Examples used the namtrace-all method so far, which, however, generates a file with
an output, that is different from the trace-all method.

4. identifier of the end node. This one, and the previous value will determine together
the link, where the event happened. (Don’t mix it with values of fields 9. and 10.)

5. Type of packet
6. Size of packet in bytes
7. Signal bits (we use only the ECN bit presently)
8. In case of a process identifier IPv6, that can be set from tcl (program 4, lines 30. and

39.); even, if the simulator does not use this identifier, we can use it at evaluating the
results, or at tracing. (E.g. NAM uses the process identifier for determining colour of
packets.)

9. node.port shaped resource address
10. node.port shaped target address
11. Sequence number of the protocol of the network layer; however, UDP realizations do

not use sequence numbers, NS – to support tracing – records also sequence number
of packets.

12. Individual identifier of packet.

Program 4. Simple simulation script

In case of running a longer simulation, when, for example, only value of some
aggragated features are interesting, it is a redundant waste of space, and a slow solution to
store the information of each and every packet. That is why there is a possibility – among

others – for the observation of only one queue – see further details in chapter of „Trace and
Monitoring Support” of the NS documentation.

We call the observation by packets „trace” in the NS terminology, and the aggregated
state observation, counting we call „monitoring”. This latter one is practical to to apply in
most of the simulations, because observation of thousands or millions of packets one by one,
and transcription of their events could result a very slow simulation, and a tremendous,
unmanageable output trace file. We can try a simulation transmitting many packets with
switching on NAM tracking, or without it.

So it is practical to apply monitoring for sake of efficiency. Information can be found
about these kinds of objects in chapter of NAM documentation mentioned above. We just
demonstrate an example here for that how we should complete the previous example to
obtain a bandwidth (more precisely, data rate) utilization figure for links 2 and 3, e.g. at a 2
seconds of measurement interval. We can also see the „2-3.bw” output file with the help of
xgraph or gnuplot programs.

…
set bwSampleInterval 2.0
…
[$ns link $n2 $n3] attach-monitors [new SnoopQueue/In]
 [new SnoopQueu/Out] [new SnoopQueue/Drop] [new QueueMonitor]
…
proc SampleBW {link} {

global ns bwSampleInterval
set qm [$link setg qMonitor_]
puts „[$ns now] [expr [$qm set bdepartures_] / $bwSampleInterval]”
$qm set departrures_ 0
$ns after $bwSampleInterval „SampleB $liknk”

}
…
$ns at 0.0 „SampleBW [$ns link $n2 $n3]”

Program 5. Completion of monitoring

