Kiterjesztett valóság alkalmazások (Applications of Augmented Reality)

Az Okos város laboratórium 5. mérése Okos város mellékspecializáció, Villamosmérnöki MSc, BME Távközlési és Médiainformatikai Tanszék A mérést Csapó Tamás Gábor <csapot AT tmit.bme.hu> dolgozta ki 2015-2016-ban.

2020. február 18.

1. A kiterjesztett valóság története és alkalmazásai

1.1. A kiterjesztett valóság története és definíciói

A kiterjesztett valóság (Augmented Reality, AR) gondolata egészen az 1930-as évekig nyúlik vissza, amikor az első számítógépek készültek. Az AR története azonban inkább az 1960-as és 1970-es években kezdődött, amikor nagy cégek vizualizációra kezdték használni a kiterjesztett valóságot. Az első fejre rögzített kijelző 1966-ban készült, amit a mai okosszeművegek elődjének tekinthetünk [1]. Az "Augmented Reality" szókapcsolatot először **Tom Caudell** használta 1992-ben, aki a Boeing munkatársai számára készített oktató alkalmazást. A Boeing-nél használt technológia azonban sokáig nem volt elég költséghatékony ahhoz, hogy a mindennapi felhasználókat is elérje.

A kiterjesztett valóság, ha egyszerűen próbáljuk leírni, akkor nem más, mint a digitális információ és a valós környezet (vagy valós környezetből élőben rögzített videó) egymásra helyezése. Például sportközvetítések esetén találkozhatunk ezzel a technológiával, amikor a televíziós közvetítésben a futballpályára kiegészítő információkat rajzolnak.

1. ábra: Sportközvetítés és kiterjesztett valóság [2].

A kiterjesztett valóság egyik definícióját **Ronald Azuma** alkotta meg 1997-ben, mely szerint a kiterjesztett valóság digitális eszközök segítségével a virtuális valóság elemeinek valós világra történő rétegezésével jön létre. Például egy AR felhasználó átlátszó szemüveget visel, amely egy képernyőt is tartalmaz; ekkor egyrészt látja a valós világot, másrészt a számítógéppel megjelenített képek is láthatóak számára [3]. A kiterjesztett valóság lényege eszerint, hogy valós világbeli és virtuális világbeli elemeket is tartalmaz egyszerre, és valós idejű interakció végezhető benne. A virtuális objektumok lehetnek állandóak vagy időben változóak. A virtuális világból származó hozzáadott tartalom például segítheti a valós világban lévő tárgyak megértését. A kiterjesztett valóságban található virtuális objektumokkal történő interakciót a felhasználó a valós világban meglévő érzékelők és kijelzők segítségével tudja elvégezni.

1. ábra: Milgram-féle Valóság-Virtualitás Kontinuum [4].

Azuma definíciójához képest **Paul Milgram és Fumio Kishino** egy másik definíciót is javasolt a kiterjesztett valóságra, melyet Milgram-féle Valóság-Virtualitás Kontinuumnak nevezünk [4]. Az 1. ábra bal oldalán található a valós környezet (Real Environment), míg a jobb oldalon a virtuális környezet (Virtual Environment). A teljesen virtuális környezet olyan számítógéppel szimulált környezet, ami egy valós vagy képzeletbeli világot szimulál - ennek egyik példája a 2003-ban indult Second Life [5]. Ezen két véglet között található a kevert valóság (Mixed Reality, MR) amely a kontinuum bal oldalától, a kiterjesztett valóságtól a jobb oldalig, a kiterjesztett virtualitásig (Augmented Virtuality, AV) tartalmazza a középső részt.

Napjainkban a virtuális valóság alkalmazások legtöbb esetben szemüveg nélkül működnek. Az AR alkalmazások hordozhatóvá váltak és például egy okostelefon kameráját felhasználva bárki számára elérhetőek. Az AR elterjedését az is segíti, hogy a felhasználókat körülveszik azok az okoseszközök (okostelefon, tablet, játékkonzol, okosóra, okosszemüveg, stb.), melyek már teljesen beépültek a mindennapokba. Ezek az eszközök legtöbbször szélessávú internetelérésre is képesek, számos érzékelővel (pl. kamera, GPS, giroszkóp) rendelkeznek, valamint nagyfelbontású kijelzővel felszereltek, így alkalmasak a virtuális valóság technológia élményszerű létrehozására. A kiterjesztett valóságot főleg marketingre és szórakoztatásra használják, de oktatási célokra is egyre népszerűbb. Emellett ma már nem elképzelhetetlen, hogy a felhasználó, miközben okostelefonjának kameráját valakire ráirányítja, arcfelismerő alkalmazást is futtat, és a kiterjesztett valóság segítségével valós időben megjeleníti az ismerősének legfrissebb bejegyzéseit a Facebook, Google+, Twitter, stb. profilból. Így a felhasználónak egyszerre van lehetősége interakcióba lépni másokkal a valós világban és a digitális környezetben is [6]. A kiterjesztett valóság digitális eszközfüggő, azaz a virtuális tartalmat a felhasználó puszta szemmel a térben nem tudja érzékelni, ehhez mindenképpen digitális eszköz szükséges. Itt fontos szempont, hogy ezek a megjelenítők a mindennapi életbe már beépültek, és használatukhoz nem szükséges új tudás megszerzése.

Az AR jövője függ attól, hogy a kiterjesztett valóság tartalmak mennyire fognak széles körben elterjedni (azaz tartalombőség vagy tartalomszegénység várható-e?). A technológia ugyan ma is mindenki számára elérhető, de az okosszemüvegek térhódításával további növekedés várható az AR mindennapi életben történő alkalmazásában [6].

1.2. A kiterjesztett valóság működése

A virtuális tartalmak valós világhoz kötésére két fő megoldás létezik.

Abszolút pozíció

A "geotagging" lényege, hogy egy adott helyhez a GPS koordinátái (azaz abszolút pozíció) alapján lehet hozzárendelni videókat, szöveges információt, hangot, vagy más felhasználó által generált tartalmat, amit később mások meg tudnak nézni. Például a mai okostelefonok és a modern fényképezőgépek a fényképhez elmentik metaadatként azt is, hogy hol és mikor készült a kép – a Geotag ehhez hasonló. Például ha a Google Earthben navigálunk, akkor a virtuális világban láthatunk a felhasználók által Geotag-gelt valós fényképeket. Emellett vannak olyan okostelefonos alkalmazások, amelyeknek a kameráját valós környezetre mutatva a képre virtuális tartalom helyeződik – persze itt az aktuális hely felismerése sokszor Geotag alapján történik [1].

Relatív pozíció

A kiterjesztett valóság tartalom jelzésére napjainkban sokszor markereket alkalmaznak: ez egy speciális azonosító kód, melyet a szenzorok felismernek, és ez által az arra alkalmas kijelzőn interakciós folyamat indul el. Így az AR nem a határok nélküli virtuális térben érvényesül, hanem egy adott helyszínen valósul meg [6]. A markerek tehát relatív pozícióhoz rendelik a virtuális tartalmat.

A markerek egyik típusa a QR kód, azaz egy kétdimenziós vonalkód, ami az ember számára nem értelmezhető, de gépi feldolgozása egyszerű. A másik típus lehet egy egyszerű kép vagy szimbólum – ez esetben a felhasználó rögtön lát valamilyen tartalmat, de a gépi felismeréshez a kamera képének feldolgozása szükséges.

2. ábra: Marker típusok: QR kód és egyszerű keretes kép.

1.3. Kiterjesztett valóság alkalmazások

<u>Layar</u>

Az egyik első okostelefonos kiterjesztett valóság alkalmazás a Layar volt, melynek első változata 2009-ben indult Hollandiában. A Layar-ban a kiterjesztett valóság tartalom különböző rétegekben található, a felhasználó ezekből kiválaszthatja, hogy mit szeretne megjeleníteni. Például ha a felhasználó az okostelefon kameráját egy épületre irányítja, akkor lehet egy réteg az épület történetéről, egy másik a közeli éttermekről, egy harmadik pedig az épületben lévő étterem étlapjáról. A Layar egyik leggyakoribb alkalmazása napjainkban az "időutazás": a virtuális tartalmak rétegeiben láthatjuk, hogy nézett ki a berlini fal vagy San Francisco az 1906-os földrengés előtt [7].

3. ábra: Layar példa [7].

<u>Wikitude</u>

A Wikitude World Browser is egy kiterjesztett valóság alapú okostelefonos alkalmazás [8]. A Browser-rel a felhasználók a környezetükről, közeli tereptárgyakról, érdekes helyekről kaphatnak információt, amely az okostelefon kamera képére helyeződve jelenik meg. Az alkalmazás marker nélküli, geotagging alapú technológiát használ.

4. ábra: Wikitude példa [8].

Google Goggles

A Google Goggles szintén egy okostelefonos alkalmazás, ami a kereső adatbázisának segítségével képes felismerni a helyszíneket, logókat, személyeket. Ezáltal kiváltja a szöveg alapú keresést, melyet a képfeldolgozó algoritmusok helyettesítenek. A New Yorkban található Metropolitan Museum of Art-ban például a Goggles is használható a festmények megtekintése során [9].

Játékok – Pokémon Go

A kiterjesztett valóság játékok közül a Pokémon Go egyértelműen siker volt, hiszen óriási mennyiségű felhasználót vonzott [10]. 2016-ban a világon egyik legtöbbet letöltött játék volt (több, mint 500 millió letöltéssel). A játékon belül a játékosok az okostelefon GPS-ét használják helymeghatározásra, harcra, virtuális karakterek tanítására – miközben ezek a karakterek a játékos valós környezetében jelennek meg [11].

<u>Múzeumok</u>

A kiterjesztett valóság technológia hatására végbemenő változások körébe tartozik a galériák, múzeumok és kiállítóhelyek fogalmának átalakulása is. Például 2011-ben a British Museumban megnyílt az egyik első olyan kiállítás, ami a kiterjesztett valóság technológiára épít: itt marker alapú AR segítségével lehet a múzeumi tárgyakról többlet információt megtudni [12]. Emellett a régi tárgyakat virtuálisan rekonstruálni lehet, illetve bizonyos tárgyak életre kelnek a múzeumban, például egy csontvázra vagy szoborra mutatva.

5. ábra: Kiterjesztett valóság a British Museum-ban [12].

Az MTVA múzeumában 2015-ben nyílt kiterjesztett valóság alapú kiállítás Budapesten, ahol a marker mellett pozíció alapú AR-t használnak [13]. Ez utóbbi során a felhasználó (illetve a kezében lévő okostelefon vagy tablet) beacon technológiával érzékeli a múzeumi tárgy közelségét, és automatikusan elindul az interakció.

<u>Egyéb</u>

A fentiek mellett számos területen találkozhatunk még kiterjesztett valóságra épülő alkalmazásokkal: AR könyvek, modellező eszközök, logisztika, játékok, bútoráruházak, oktatás, sport, katonai eszközök, stb. Ezekkel a témákkal azonban nem foglalkozunk a mérésen.

1.4. Tömören a kiterjesztett valóságról

6. ábra: Videó a kiterjesztett valóságról [14]. https://www.youtube.com/watch?v=otIgj8F7XmI

1.5. Felhasznált irodalom

[1] Hamilton K. E., Augmented Reality in Education, <u>https://augmented-reality-in-</u> education.wikispaces.com/home

[2] Ball Tracking and Augmented Reality, <u>http://thinkactreflectrepeat.blogspot.hu/2014/05/ball-tracking-and-augmented-</u> reality.html

[3] Azuma, R., A Survey of Augmented Reality, *Presence: Teleoperators and Virtual Environments*, vol. 6, no. 4, 1997, pp. 355–385.

[4] Milgram P., Takemura H., Utsumi A., Kishino F., Augmented Reality: A class of displays on the reality-virtuality continuum, ATR Communication Systems Research Laboratories, Kyoto, 1994.

[5] Second Life: The largest-ever 3D virtual world created entirely by its users, http://secondlife.com/

[6] Szűts Zoltán, Yoo Jinil, A kiterjesztett valóság térhódítása, Információs társadalom, vol. 13., no. 2., 2013, pp. 58-67.

[7] Layar history, <u>https://www.layar.com/news/blog/tags/history</u>

[8] Wikitude App, http://www.wikitude.com/app/

[9] Google Goggles in MET, <u>http://www.metmuseum.org/about-the-museum/now-at-the-met/from-the-director/2011/google-goggles</u>

[10] Pokémon Go, http://www.pokemongo.com

[11] Pokémon Go, https://en.wikipedia.org/wiki/Pokémon Go

[12] British Museum - Augmented Reality: Beyond the Hype, <u>http://www.museum-id.com/idea-detail.asp?id=336</u>

[13] MTVA Rádió- és Televíziótörténeti Kiállítóhely [MTVA Radio and Television History Exhibition, in Hungarian], <u>http://www.mtva.hu/hu/radio-es-televiziotoerteneti-kiallitohely</u>

[14] Techquickie, Augmented Reality As Fast As Possible, https://www.youtube.com/watch?v=otIgj8F7XmI

[15] LARA – Augmented Reality, <u>http://www.laraapp.com/en</u>

Az internetes linkek utolsó ellenőrzése: 2018. február 12.

2. Ellenőrző kérdések

- 1) Milyen definíciókat ismersz a kiterjesztett valóság fogalmára?
- 2) Ki / melyik cég használta először a "kiterjesztett valóság" szókapcsolatot?
- 3) Mi a kiterjesztett valóság definíciója Ronald Azuma szerint?
- 4) Mi a kevert valóság (Mixed Reality, MR)?
- 5) Mi a különbség a kiterjesztett valóság (Augmented Reality, AR) és virtuális valóság (Virtual Reality, VR) között?
- 6) Milyen kiterjesztett valóságra épülő alkalmazásokat ismersz?
- 7) Mire használható a Layar alkalmazás?
- 8) Mi a Pokémon Go alkalmazás?
- 9) Mire használható a LARA alkalmazás?
- 10) Milyen eszköz(ök) szükséges(ek) kiterjesztett valóság tartalom megjelenítéséhez?
- 11)Mi a különbség a markeres és a marker nélküli kiterjesztett valóságban?
- 12) Milyen markerek használhatóak kiterjesztett valóság alkalmazásokhoz?
- 13)Hogyan tesztelnél potenciális felhasználókkal egy kiterjesztett valóság alkalmazást múzeumi környezetben?

Kiterjesztett valóság alkalmazások (Applications of Augmented Reality)

Az Okos város laboratórium 5. mérése Okos város mellékspecializáció, Villamosmérnöki MSc, BME Távközlési és Médiainformatikai Tanszék A mérést Csapó Tamás Gábor <csapot AT tmit.bme.hu> dolgozta ki 2015-2016-ban.

2020. február 18.

3. Mérési utasítás

3.1. Bevezető

2015 év elején újra megnyílt az MTVA Rádió- és Televíziótörténeti Kiállítóhely a Pollack Mihály téren [1]. A múzeum látogatói a kiállítás megtekintése során egy Androidos tablettel kiterjesztett valóság tartalmakat is meg tudnak nézni. A kiállított tárgyak mellett van egy QR-kód vagy iBeacon helyinformáció, ami alapján a tableten futó alkalmazás felismeri az aktuális tárgyat. A felismerés után kapcsolódó tartalmakat (hangfelvételeket, videorészleteket) lehet megtekinteni, valamint az egyik régi rádió belsejébe is benézhetünk virtuális valóság alkalmazásával. A kiállítás végén pedig virtuális TV macival illetve Süsüvel lehet fényképezkedni. A mérés során az lesz a feladat, hogy egy a fentihez hasonló múzeumi környezetben használható kiterjesztett valóság alkalmazást készítsünk el.

A méréshez az AR Media Player alkalmazást [2] fogjuk használni a kiterjesztett valóság tartalom megjelenítésére, a virtuális tartalom előállítását pedig a Trimble SketchUp-pal [3] végezzük. Készítsd jegyzőkönyvet, ami minden feladathoz tartalmaz képernyőkép(ek)et!

3.2. Jegyzőkönyv

Figyelem! A mérés során készítsetek jegyzőkönyvet, amely tartalmazza a feladatok megoldásához kapcsolódó képernyőképeket és rövid szöveges magyarázatukat. Jegyzőkönyv minta a tárgy honlapján található. A jegyzőkönyvben ne szerepeljenek a mérési utasítások, illetve szükségtelen egyéb információk. A jegyzőkönyvben használd a feladatok sorszámát pl: 1). A jegyzőkönyvnek minimálisan tartalmaznia kell a következőket:

- Tárgy neve, mérés neve
- Mérés helyszíne, időpontja
- Mérést végző hallgatók adatai (neve, neptun kódja, méréscsoport)
- A méréshez használt eszközök
- A méréshez használt szoftverek verziója / azonosítója
- A mérés során elvégzett feladatok pontos leírása, az eredmények dokumentálása
- A mérés elvégzéséhez kapcsolódó megjegyzések, szubjektív vélemények.

A mérési jegyzőkönyvet egy <NEPTUN1>-<NEPTUN2>-OV05.ZIP fájl formájában kell feltölteni a következő oldalon keresztül:

http://smartlab.tmit.bme.hu/education-OV-upload login

3.3. Kötelező feladatok

1) armedia fájl lejátszása

Nyisd meg az ARplayer alkalmazást, és válassz egy .armedia fájlt a c:\OV05_AugmentedReality\demo könyvtárból! A kinyomtatott papírok közül válaszd ki az AR-media jelölésű markert, és a webkamerát irányítsd erre! Mozgasd körbe a tárgyat / épületet, nézd meg az esetleges animációt! Próbáld ki a többi demo .armedia fájlt is!

Segítség: az ARplayer menüjét a H gombbal lehet előhozni, a teljes képernyőből a H gombbal lehet kilépni; a bal/jobb/fel/le nyilakkal tükrözni lehet a képernyőt. Az F1/F2/stb. gombokkal más módokba is kapcsolható az ARPlayer, amikben egyéb funkciók (pl. drótkeret, síkmetszetek) is tesztelhetőek.

2) Szöveg és egyszerű objektum ráhelyezése gyári markerre

Nyisd meg a SketchUp alkalmazást. Ha nem látszik az ARPlugin, akkor a View / Toolbars menüben tudod láthatóvá tenni.

A SketchUp eszköztárak segítségével készíts el egyszerű alakzatokat (pl. téglatest, körhasáb, szövegfelirat). Ha kész van a teljes színhely, az ARPlugin eszköztár első gombjával (View) tudod azt tesztelni az ARPlayerben. Skálázd át az objektumot (nagyítsd / kicsinyítsd) a SketchUpban, és ellenőrizd ARPlayerben.

3) Bonyolultabb objektum letöltése a 3D Warehouse-ból

Nyisd meg böngészőben a 3D Warehouse-t a <u>https://3dwarehouse.sketchup.com</u> oldalon (bejelentkezés szükséges, pl. Google). Keresd meg a BME valamelyik épületét, mentsd el SketchUp 2014/2015 formátumban és add hozzá az aktuális színhelyhez. Teszteld ARPlayerben.

4) Beágyazott videó hozzáadása

Az ARPlugin Objects eszköztárban keresd meg a videó hozzáadása gombot (Create a custom object that will display the chosen video file...). A video könyvtárból adj hozzá a színhelyhez egy .mov fájlt. Teszteld ARPlayerben.

5) Beágyazott hang hozzáadása

Az ARPlugin Objects eszköztárban keresd meg a hang hozzáadása gombot (Create a custom object that will display the chosen audio file...). Az audio könyvtárból adj hozzá a színhelyhez egy .wav fájlt. Teszteld ARPlayerben.

6) Több markeres környezet

Az eddigiek során a marker felismerése után minden objektum egyszerre megjelent az ARPlayerben. A következőkben azt valósítjuk meg, hogy több markert lehessen kezelni egy színhelyen belül, és csak az objektumok egy része (pl. egy épület a hozzá kapcsolódó videóval) jelenjen meg.

😥 AR-media(TM) Plugin – 🗆 🗙	
Library	Scene
Available Markers	Active Markers 🛛 📿
3D Comics	
3D Dynamic 1	
3D Dynamic 2	
3D Dynamic 3	
3D Modern	Setup
AR-media	
AR Comics	Disable Remove
Use Add	Disable all Remove all
Create	
	Show Message
Save Load	
Preview	Objects <u>T</u>
	Audio
Not	Soundtrack
NOL	
Available	Actions <u>T</u>
	View/Export for iOS/Android
	Lxport
	Configure About

Az ARPlugin eszköztárból nyisd meg a Setup részt!

Az "Available markers" ablakból lehet kiválasztani, hogy melyik markereket szeretnénk felhasználni az adott színhelyben. A "Use" gombbal adj hozzá legalább két markert a jelenlegi színhelyhez. Az "Active Markers" ablakban kiválaszthatjuk a hozzáadott markereket, és a "Setup" gombbal be lehet állítani, hogy az adott marker felismerése esetén melyik objektumok jelenjenek meg. Állítsd be, hogy az egyik marker esetén a korábban hozzáadott bonyolultabb objektum és a hang, míg a másik marker esetén az egyszerű objektum és a video játszódjon le!

Teszteld ARPlayerben: próbáld ki, hogy a kamerát különböző markerekre irányítva mi történik.

7) Helyadatok hozzáadása

A <u>http://www.gps-coordinates.net</u> (vagy más honlap) használatával keresd meg egy hely koordinátáit, ahol az obejktumaidat szeretnéd megjeleníteni. A SketchUp-ban így tudod ezt beállítani: Window / Model Info / Geo-location / Set Manual location.... Ezután exportáld KMZ formátumba a színhelyet, és Google Earth-ben próbáld ki a megadott fizikai környezetben a korábbi modelleket (tipp1: ne használj ékezetes karaktereket az elérési útban; tipp2: használhatod a Preview model in Google Earth gombot is).

Alternatív megoldás: A SketchUp eszköztárból keresd meg az "Add location" gombot, majd válassz ki a térképen egy helyet.

Opcionális részfeladat: modellezd le a Kopaszi-gátra tervezett 120 m magas toronyházat (<u>link</u>), majd teszteld Google Earth-ben, miért rontja el a dunai panorámát (<u>link</u>).

8) Interaktív multimédia

Készíts interaktív videó lejátszót, aminek során a színhelyben egy gombbal lehet vezérelni a videó lejátszást! Ehhez a gomb, a TV és a videó közötti kapcsolatot az ARmedia eszközökben használható XML alapú interakció leírással fogjuk elvégezni. Az egyes részfeladatokat teszteld mindig ARPlayer-ben!

a) A 3D Warehouse-ból tölts le egy TV készüléket (a 3. feladathoz hasonlóan).

b) Adj hozzá egy beágyazott videót (a 4. feladathoz hasonlóan), nevezd el Video_Anak.

c) A videót forgasd el és helyezd át, hogy illeszkedjen a TV képernyőjéhez (Move, Scale, Rotate).

d) Adj hozzá egy magasabb hengert, ami a gomb kikapcsolt állapota lesz; nevezd el Button_UP-nak. (Tipp: előfordulhat, hogy a hengerből egy komponenst kell készíteni: jobb gomb, Make Component).

e) Adj hozzá egy alacsonyabb hengert, ami a gomb bekapcsolt állapota lesz; nevezd el Button_DOWN-nak.

f) A gombokat forgasd el és helyezd egymásra, hogy a TV-n legyenek.

g) Adj hozzá egy egyedi markert és rendeld hozzá a TV-t, videót és a két gombot.

h) Mentsd el a lenti doboz tartalmát Video_A.xml néven. A Marker Configuration ablak Attached Objects részében válaszd ki a Video_A objektumot, majd kattints a Properties... gombra. Az Interactions résznél ad hozzá Custom XML-ként a Video_A.xml fájlt.

```
<<mark>?</mark>xml version="1.0" encoding="UTF-8" standalone="no"<mark>?></mark>
<events name="video events">
    <event name="on init">
        <actions>
            <!-- choose to hide the video on startup -->
            <action source="_self_" target="_self_">
                 <command>hide</command>
            </action>
            <!-- take the chance to set the loop mode -->
            <action source="_self_" target="_self_">
                 <command>loop</command>
                 <parameters>
                     <parameter name="loop">true</parameter>
                 </parameters>
            </action>
        </actions>
    </event>
</events>
```

A Marker Configuration ablak Actions részében a View gombbal tudod tesztelni az aktuális interakciókat.

i) A Marker Configuration ablak Attached Objects részében válaszd ki a Button_UP objektumot, majd kattints a Properties... gombra. Az Interactions résznél adj hozzá egy XML fájlt, melynek tartalma a lentihez hasonló legyen. A TODO sorokat egészítsd ki!

```
<<mark>?</mark>xml version="1.0" encoding="UTF-8" standalone="no"<mark>?></mark>
<events name="button_up_events">
    <!-- possible events:
        on_left_mouse_click, on_right_mouse_click,
on_left_mouse_double_click, on_right_mouse_double_click,
         on_mouse_in, on_mouse_out, on_hide, on_show, on_init,
on_marker_detected, on_marker_lost -->
        on marker detected,
    <!-- possible commands:
        hide, show, play, pause, toggle pause, rewind, loop -->
    <!-- events for left mouse click --\overline{>}
    <event name="on left mouse click">
         <actions>
             <!-- hide this button -->
             <action source="_self_" target="_self_">
                  <command>hide</command>
             </action>
             <!-- show the DOWN button -->
             <action source=" self " target="Button DOWN">
                  <command>show</command>
             </action>
             <!-- show the video -->
             <!-- TODO -->
             <!-- play the video -->
             <!-- TODO -->
         </actions>
    </event>
    <!-- events for right mouse click -->
    <event name="on_left_mouse_click">
         <!-- TODO -->
    </event>
</events>
```

j) A Marker Configuration ablak Attached Objects részében válaszd ki a Button_DOWN objektumot, és készítsd el az ehhez kapcsolódó interakció fájlt. Segítség: a DOWN gomb megnyomásakor tűnjön el a DOWN gomb, jelenjen meg az UP gomb, álljon le a videó, és tűnjön el a videó. A végeredmény ehhez hasonló legyen:

3.4. További javasolt feladatok

9) QR kód és marker egyben

Ebben a feladatban QR kód alapú markert hozunk létre. A QR kód egy linket fog tartalmazni, ami egy .armedia objektum letöltését és elindítását tudja kezdeményezni.

a) Készíts egy linket, ahonnan az armedia fájlt le lehet majd tölteni. Ehhez használhatod a saját honlapodat az alpha szerveren, vagy a http://smartlab.tmit.bme.hu/education-OV-upload-armedia login feltöltő oldalt.

b) A linket felhasználva készíts QR kódot a <u>http://goqr.me</u> oldalon.

c) A QR kód képét mentsd el 300x300 pixel méretben és készíts belőle saját markert (a 7. feladathoz hasonlóan).

d) Készíts valamilyen modellt a Sketchup-ban és rendeld hozzá az új markerhez.

e) Az ARplugin Export funkcióval exportáld a színhelyet .armedia fájlba.

f) Az .armedia fájlt töltsd fel a korábbi link helyére (a/ részfeladat).

g) Egy QR kód felismerő alkalmazással és az ARPlayer-rel teszteld a QR kód alapú markert.

A végeredmény ehhez hasonló legyen:

10) Kiterjesztett valóság okostelefonon

Az ARplugin / Setup-ban tudsz iOS / Android formátumú .armedia fájlt exportálni, ha bekapcsolod a "View/Export for iOS/Android" opciót. A telefonodra telepíteni kell az ARPlayer alkalmazást a Store-ból, és utána ezen is tudod tesztelni a korábban készített kiterjesztett valóság tartalmakat.

3.5. Felhasznált irodalom

[1] "Újra megnyílt a Rádió- és Televíziótörténeti Múzeum", <u>http://www.hirado.hu/2015/01/15/ujra-megnyilt-a-radio-es-televiziotorteneti-muzeum/</u>

[2] AR Media Player,

http://www.inglobetechnologies.com/en/new_products/arplayer/info.php

[3] Timbre SketchUp, <u>https://www.sketchup.com/download</u>

Mérési jegyzőkönyv minta

Okos város laboratórium

OV_05: "Kiterjesztett valóság alkalmazások" mérés

Mérést végezték:	
Mérőcsoport:	xy.
Név:	Hallgató 1
Neptun kód:	HAL123
Email cím:	hallgato1@bme.hu
Név:	Hallgató 2
Neptun kód:	HAL456
Email cím:	hallgato2@bme.hu
Mérés ideje:	2020. hónap nap.
helye:	I.B.211.
Mérésvezető:	Csapó Tamás Gábor, csapot@tmit.bme.hu

Mérésleírás: http://www.tmit.bme.hu/vitmmb04

A méréshez használt eszközök:

- Logitech XYZ webkamera
- papír alapú markerek

A méréshez használt szoftverek verziója / azonosítója

- Trimble SketchUp v.XY
- ARPlayer v.XY
- Logitech Webcam Software v.XY

A mérés során elvégzett feladatok pontos leírása, az eredmények dokumentálása

1) armedia fájl lejátszása

Feladat megoldása (képernyőkép és rövid leírás):

2) Szöveg és egyszerű objektum ráhelyezése gyári markerre

Feladat megoldása (képernyőkép és rövid leírás):

3) Bonyolultabb objektum letöltése a 3D Warehouse-ból

Feladat megoldása (képernyőkép és rövid leírás):

4) <u>Beágyazott videó hozzáadása</u>

Feladat megoldása (képernyőkép és rövid leírás):

5) Beágyazott hang hozzáadása

Feladat megoldása (képernyőkép és rövid leírás):

6) Több markeres környezet

Feladat megoldása (képernyőkép és rövid leírás):

7) Helyadatok hozzáadása

Feladat megoldása (képernyőkép és rövid leírás):

8) Interaktív multimédia

Feladat megoldása (képernyőkép, forráskód és rövid leírás):

9) QR kód és marker egyben

Feladat megoldása (képernyőkép és rövid leírás):

10) Kiterjesztett valóság okostelefonon

Feladat megoldása (képernyőkép és rövid leírás):

A mérés elvégzéséhez kapcsolódó megjegyzések, szubjektív vélemények:

- bármilyen véleményt várunk ide