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1. Introduction 

During everyday life we often interact with computers and computer-controlled devices. 

The method of communicating with them determines the effectiveness, therefore, we strive 

to make it easier. The human speech perfectly suitable for this purpose, because for us it is 

the most natural form of communication. So the machines have to be taught to talk and 

understand speech. 

 In this measurement a complete speech recognition system will be presented. The 

demonstration program runs on an IBM PC-compatible computer. If the computer is 

equipped with a microphone, the recognition system can be trained with user-specific 

utterances. After training process in recognition mode, the accuracy of the speech 

recognizer can be tested. The user only has to talk into the microphone; the program detects 

word boundaries and returns the most probable item from its vocabulary. 

In order to improve the quality of the recognition, it is necessary to run recognition 

tests in the same circumstances. In the system, various detection algorithms can be easily 

tested, by using speech recognition scripts. Fully automated tests can be carried out with 

the scripts and the results can be logged. 
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2. About speech recognition in general 

2.1 Basic methods 

Speech information is partly contained in the acoustic level, and partly in the grammatical 

level, hence considering only the acoustic level would not be efficient. Therefore, speech 

recognizers try to determine different grammatical characteristics of speech to perform 

comparison among the items of the vocabulary. 

2.1.1 Isolated word speech recognizers 

Isolated word recognizers are able to process word-groups or words separated by short 

pauses. 

 

Figure 2.1 Block diagram of an isolated word speech recognizer  

 

Task of the elements of the recognizer: 

 Feature Extraction: This process makes an attempt to determine the quantities 

carrying information about the content of the speech and at the same time tries to 

eliminate irrelevant information (noise, phase, distortion). It creates series of feature 

vectors from the digitized speech signal. Some possible approaches: linear prediction, 

Fourier transform, band-pass filtering, cepstral analysis. 

 Start and end point detection: Separation of speech and non-speech parts of the 

utterance. Can be carried out by checking signal energy, by counting zero-crossings or 

other characteristics. 

 Time alignment: Compensates the effect of different speech speeds and phone lengths 

by shrinking or extending time axis (time warping). 
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 Classification: Selects a reference item having feature vectors series that is the most 

close to the feature vector series of the utterance. Distance can be measured by using 

some kind of metrics (e.g. Euclidean distance) 

 

The above described steps are usually referred to as Dynamic Time Warping (DTW) 

technique. DTW-based recognizers are speaker dependent (every reference item has to be 

trained with the user’s voice), and their lexicon size usually under 100 items. However, the 

content of the lexicon in the most cases is not fixed; it can be edited by the user. 

2.1.2 Continuous speech recognition 

Nowadays for continuous speech recognition purposes almost exclusively Hidden Markov 

Model (HMM) based systems are used. In this model, words and sentences are built up 

from phone-level based HMM models. The incoming feature vector series – provided by 

the feature extractor module – are evaluated with the so-called Viterbi algorithm to 

determine the probability of each HMM state. After phone-based probabilities are 

calculated the so-called pronunciation model helps to move up from level of phones to the 

level of words. Continuous speech recognizers are commonly supported by word-based 

grammars that contain probability weights for the connection of every lexical item. 

 Continuous speech recognizers work efficiently if the recognition task has limited 

vocabulary and grammar. Hence e.g. medical dictation systems perform exceptionally well, 

whereas recognition of spontaneous speech is still a major challenge. The HMM-based 

method has the advantage over DTW, that it is performs much better for speaker 

independent tasks. However DTW is language independent method and can be a better 

choice for small vocabulary, speaker dependent solutions. HMM-based recognizers need to 

be trained with large quantity (hundreds of hours) of speech, while DTW is manually 

trained by user by uttering the lexical items. 
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3. The operation of program Vdial 

The program has two modes: simple word training and recognition and script execution 

mode. In the first case words can be recognized and trained directly from the microphone 

or from a file. On the other hand scripts are designed to make easier the running of speech 

recognition experiments. In this scripts commands can be given, which are executed by the 

program, while parameter settings and the recognition results are logged. During 

experiments the error rate of the recognizer is investigated at various parameter settings. By 

means of that the best recognition algorithms and parameters can be found. 

 

 

Figure 3.1 Block diagram of the Vdial isolated word recognizer 

 

In the following the functional elements of the system is presented. 

3.1 Start and end point detection 

The start and end point detection unit aims to find the parts of the incoming signal that 

contains actual speech. Detection is based on signal energy: if it is above a certain 

threshold, then the corresponding part of the signal is classified as speech. The threshold is 

adaptive; its current value is calculated from the absolute minimum energy till then, which 

is also increased by a predefined dB value (that is why microphone should not be turn on 

and off during the measurement). Thus the threshold is always adapted to the current level 

of noise. 

 A further restriction is that signal energy has to exceed the threshold longer than a 

certain time period, otherwise it is not considered to be a word. With this method the short, 

sudden noises can be filtered out. On the other hand if the energy threshold is exceeded for 
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too long (longer than a given time period), the given piece of signal is rejected to be part of 

speech in order to avoid any long-term source of noise disturbs the system. Besides, these 

long, large volume parts are used to refine the threshold level. One additional important 

aspect is that words containing short, inter-word silences should not be split into two parts. 

3.2 Feature Extraction 

The role of the speech extractor unit is to extract the information from speech signal that is 

needed to identify the uttered word. We strive to filter out the factors that do not carry 

information about speech content. Hence, some transformation is needed to be done on the 

speech signal. 

 

Figure 3.2 Block diagram of the feature extractor 

3.2.1 Framing 

The incoming speech signal is slightly better than the telephone quality: 16-bit, 8 kHz 

sampling frequency. The signal is first split into 32 ms long frames. This is because the 

speech is constantly changing and we would like to follow these changes. If frame size is 

too large, the rapid changes cannot be observed, while if frame size is too small the base 

harmonic (~ 20 ms long) of a deep-voiced speaker (~50 Hz) would not fit into the frame. 

Frames are 50% overlapped in order to process fast changes in speech characteristics.  

3.2.2 Pre-emphasis 

Pre-emphasis suppresses low frequency components, while amplifying the high frequency 

components in the frames. For this purpose a first-order FIR filter is applied with the 

following transfer function: 

 W z z  1 0 95 1.  
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3.2.3 Hamming-window 

Before discrete Fourier transform (DFT) is performed, the signal has to be windowed, since 

speech is not a perfectly periodic signal. The simplest, rectangular window spreads the 

spectrum, thus it is not suitable for our purposes. However, by using Hamming window, 

spectrum can be sharpened. Multiplication with the window function in the time domain 

corresponds to convolution with the Fourier transform of the window function in the 

frequency domain. So, the windowing of the signal can be interpreted as filtering of the 

signal spectrum. 

Function of the Hamming window: 

 h n
n

N
 0 54 0 46

2
. . cos



 
where n = 0 ... N-1, and N is the window size. 

3.2.4 Discrete Fourier transform 

By applying discrete Fourier transform we can switch over from time to frequency domain. 

This is necessary because factors charactering speech can only be observed in the spectrum. 

In addition, many distortions in the input signal e.g. random phase shift, additive noise and 

distortion (convolutional noise) can only be removed in frequency domain. 

 DFT is computed with the fast algorithm (FFT), because it is incomparably faster 

than simple DFT algorithm. Only the square of the absolute value of the resulting complex 

spectrum is further processed, phase information is irrelevant to the content of speech, thus 

it is omitted. Calculation of DFT components: 

 F x i ek
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where x[i] is the signal function in time domain, N is the size of transformation, while Fk-s 

are the Fourier coefficients (k = 0 ... N-1, in our case k = 0…N/2-1). 

3.2.5 Mel-scale filter banks 

The sensitivity of human sound perception varies in the function of the frequency. At 

higher frequencies only larger distances in frequency can be distinguished than at lower 

frequency. This distinctive ability (frequency resolution) under 1000 Hz changes 

approximately linearly, while over it logarithmically (thus above 1000 Hz width of bands 

increases exponentially). This is called the mel-scale. Since human hearing performs well 
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for understanding of human speech, it is advisable to imitate it. This scale actually shows 

the typical information content density along the frequency axis. 

 Formula of the mel-scale: 

f
f

Hz
mel

lin  








2595 1

700
10log

 

Here 40 filter banks (or less) are used, and the entire frequency range (0 – 4 kHz) is 

covered. 

 

Figure 3.3 Illustration of mel-scale filter banks (M=9) 

3.2.6 Logarithm and discrete cosine transform 

The last two steps of the processing are for the calculation of the cepstrum. The 

"traditional" cepstrum is calculated from linearly scaled logarithmic spectrum with an 

inverse DFT. In contrast, the so-called mel-cepstrum is calculated from the output of the 

logarithmic mel-scale filter with DFT or discrete cosine transform (DCT). This last 

transformation (DCT) is used also in image processing, and has an important feature that it 

keeps the input signal phase, and provides only real values. (The input signal here is not a 

function of time, but the logarithmic spectrum. While the phases of sine components of the 

speech are irrelevant, the phases of the sine components of the logarithmic spectrum carries 

crucial information.) 

 Calculations of DCT components: 

 
c f
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i

M
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where M is the number of filter banks. Not all DCT components but usually only 12 are 

determined. The real purpose of the application of DCT is to decorrelate input vectors. 

Thus, even if high dimensional components are omitted from the DCT transformed vectors, 

they can represent roughly the same amount of information as the original ones. 
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3.3 Time alignment and classification 

The time alignment and classification unit takes the distance between the feature vector 

series of the utterance and all the stored vector series. The result of the recognition is the 

label of that stored vector series that is closest to the utterance. Time alignment here is 

performed with the Dynamic Time Warping (DTW) algorithm. 

 The inputs of dynamic time warping are two vector series, while the output is the 

aggregated distance between them. To solve the task we can draw up a coordinate system 

in which the two axes show (discrete) time belongs to the compared vector series, while 

grid points contain distance of the corresponding two vectors. As a metric for distance 

Euclidean distance is used: 

 d x y x yk k

k

N

( , )  



1

2

 

 

Figure 3.4 Linear time warping for two vectors with different length  

In figure 3.4 the thick line indicates the path along which the incoming vector is uniformly 

shrunk or extended for the comparison. This is called linear time warping. Stepping out on 

the shaded area means some part of the vector is unevenly extended compared to other 

parts. Actually this is the commonly good approach, because changes in length are usually 

spread unevenly across the vector. For instance, in most languages if a word is pronounced 

longer the expansion of vowels is relatively higher than the expansion of the consonants. 

Therefore the path of the warping is usually not the diagonal. (Fig. 3.5.) 
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Figure 3.5 Time alignment along a curved path 

 

 However the path of time warping cannot be arbitrary. It is not allowed to go 

backwards. In addition, the forward progress also can be restricted in various ways 

depending on how much variation we allow during the process. Fig. 3.6 presents a few 

options. In our system, the first one is used. 

 

Figure 3.6 Some local continuity restrictions and the corresponding paths 

To define the optimal route, some notations have to be introduced! Denote the time 

warping functions with x and y, which create a relationship between ix and iy indices of 

the vector series and between k discrete time. 
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x (k) = ix  k = 1, 2, ..., T 

and 

y (k) = iy k = 1, 2, ..., T 

where T is the normalized length of the two vector series. If a valid x and y pair is 

denoted with  = (x, y), then a global distance between the vector series for a given  is 

the following: 

    d X Y d k kX Y

k

T

  ( , ) ,



1

 

Therefore distance between X and Y can be defined as: 

   d X Y d X Y, : min ,


  

where  has to meet certain conditions: 

 - starting point: x (1) = 1   y (1) = 1 

 - end:   x (T) = Tx   y (T) = Ty 

 - monotony:  x (k+1)  x (k)  y (k+1)  y (k) 

 - local continuity: x (k+1) - x (k)  1  y (k+1) - y (k)  1. 

d (X, Y) is calculated with dynamic programming. Partial distance along the path between 

(1, 1) and (ix, iy): 

    D i i d k kx y
T

X Y

k

T

x y

( , ): min ,
, , '

'





 

 
1

 

assuming that:  

x (T’) = ix and y (T’) = iy 

Thus, we obtain the following recursive formula: 

       D i i D i i i i i ix y
i i

x y x y x y
x y

( , ): min ', ' ', ' , ,
', '

    (3.1) 

For a general local continuity restriction: (only for those who interested in the topic) 

(( ix’, iy’), (ix, iy)) is the local distance between ( ix’, iy’) and (ix, iy) grid points: 

           i i i i d T l T lx y x y X Y

l

LS

', ' , , ' , '  



1

 

where Ls is the number of steps from (ix’, iy’) to (ix, iy) according to x és y. If the following 

conditions are fulfilled: 

x (T’ - Ls) = ix’ és y (T’ - Ls) = iy’. 
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With Type I. local continuity restriction 

The  incremental distance is only calculated for those paths that are permitted by the local 

continuity conditions. In other words, in expression (3.1) (ix’, iy’) space is restricted for 

those grid points that are valid starting points in the set of local continuity restrictions (see 

Fig. 3.6). With our local continuity restrictions: 

D (ix,  iy) = min { D (ix - 1,  iy) + d(ix,  iy), 

   D (ix - 1,  iy - 1) + d(ix,  iy), 

   D (ix,  iy - 1) + d(ix,  iy) 

  }. 

The complete algorithm consists of the following steps: 

1. Initializing 

DA (1, 1) = d (1, 1). 

2. Recursion 

For every ix and iy that fulfills 1   ix  Tx and 1   iy  Ty has to be calculated: 

DA (ix, iy) = min {DA (ix-1, iy) + d(ix, iy),  DA (ix-1, iy-1) + d(ix, iy),  DA (ix, iy-1) + d(ix, iy)} 

3. Ending 

d (X, Y) = DA (Tx, Ty). 

It can be seen that each column and row only depends on the previous row and column. 

This can be employed, that we do not store the entire table in memory, but only one column 

or row, and it is always overwritten with the new data. Significant memory can be saved. 

3.4 Reference items 

The reference items unit stores the reference feature vector series of words in memory. 

During training process all new feature vector series are saved here and get labeled. 

3.5 Script files 

Script files consist of commands, instructions, which can be executed by an interpreter. 

They are designed to run recognition test fast, and easily. An example script file can be 

found in the appendix. As a result of script running a log file is created, in which the 

parameter settings and recognition results are saved. The important commands are 

described in the Table 3.1. 
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Command Parameters What it does 

Train WAVE files 

separated by space 

Read files from the input, searches for words in them, 

performs feature extraction, and stores the feature vector 

series into the word database 

TrainFromMic – Does the same as the previous command, but it trains the 

system from microphone 

 

Test WAVE files 

separated by space 

Read every file step by step, performs word recognition in 

them (searches for the closest reference file), and returns the 

recognized strings 

Play a WAVE file Plays back the given sound file 

Rem optional text After this command comments can be written which are 

ignored by the interpreter 

Stop – The script execution stops 

Call name of a procedure Calls a procedure 

Proc name of a procedure Marks the beginning of a procedure 

EndProc – Marks the end of a procedure 

Echo optional text Everything written after this command is sent to the log file 

ForgetTemplates – Delete the content of word database 

ClearStatistics – Delete all statistics 

ShowStatistics – Statistical data is sent to the log file 

Set Path path Path for the wave files can be given   

Set VectorType FilterBank or 

MelCep 

Type of feature extraction can be modified 

 

Set FilterBankSize an integer Number of filter banks can be modified. If  VectorType= 

FilterBank, then this number also gives the dimension of the 

feature vector. If VectorType= MelCep then is gives the 

dimension of the vectors entering into cepstrum processing 

Set MelCepSize an integer Order of mel-cepstrum processing can be modified.  If  

VectorType= FilterBank then this command is ignored 

Table 3.1. Instruction set 
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4. The usage of program Vdial  

4.1 Menus 

4.1.1 Templates menu 

By using this menu items content of word database can be saved to disk, loaded from disk 

or deleted. 

4.1.2 Run menu 

 Selecting Analyze from mic menu item the program performs feature extraction on 

microphone signal, and tries to find word boundaries 

 Analyze file... menu item similar to the previous one, but it operates on wave files 

 Train from mic command stores all the words in the word database that we label in the 

utterance. A label can be designated to more than one utterance. 

 Train file... command works on a chosen wave file. A description file has to be 

attached! (see below) 

 Recognize from mic performs recognition on the signal gave to the microphone 

 Recognize file... performs speech recognition from sound file. If a description file is 

attached, then it goes through the words step by steps and compares them to the 

recognized strings. Thus recognition statistics can be made. 

 Run command file... runs a script file 

4.1.3 Options menu 

 if Step by step item is active, the program only calculates if space button is pressed, if it 

is engaged calculation hangs up 

 if Word by word item is active, the program goes performs recognition word by word 

 Do next frame substitutes space button in step by step mode 

 Do next word substitutes space button in word by word mode 

 Pause item hangs up calculation if step by step or word by word mode is not active 

 Stop hangs up the currently running calculation. Same as pressing Escape button 

 if Playback item is active, the program plays back the sound files after every processing 
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 Isolated word recognition, Connected word recognition, Continuous recognition 

The latter two is only experimentally realized here. 

4.1.4 Settings menu 

 Find word settings: parameters of word search can be modified here 

 Signal processing settings: sampling frequency, the parameters of feature extraction, 

type of feature vectors and additive noise related parameters can be set here 

 Plot settings: features of the plotted functions can be modified 

4.2 Description files 

Description file is a text file (TXT extension) that has to be stored next to wave file having 

the same name as the wave file. It contains words separated by space or new line character 

that was uttered in the recorded audio file. 
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5. Appendix 

5.1 A script file and its output 
TEST1.CMD: 

 

 

ClearTemplates 

Set VectorType = FilterBank 

Set FilterBankSize = 8 

Call Test12 

Set FilterBankSize = 12 

Call Test12 

Set FilterBankSize = 20 

Call Test12 

Set FilterBankSize = 30 

Call Test12 

 

Set VectorType = MelCep 

Set MelCepSize = 8 

Set FilterBankSize = 8 

Call Test12 

Set FilterBankSize = 12 

Call Test12 

Set FilterBankSize = 20 

Call Test12 

Set FilterBankSize = 30 

Call Test12 

 

Set MelCepSize = 12 

Set FilterBankSize = 8 

Call Test12 

Set FilterBankSize = 12 

Call Test12 

Set FilterBankSize = 20 

Call Test12 

Set FilterBankSize = 30 

Call Test12 

 

Stop 

 

 

Proc Test12 

 

Call Test1 

Call Test2 

 

EndProc 

 

 

Proc Test1 

 

Set Path = WAVES\SZAMOK 

 

ClearStatistics 

Echo Train files: lb1 - lb4,  test files: lb1 - lb4 

ClearTemplates 

Train lb1 

Test lb2 lb3 lb4 

ClearTemplates 

Train lb2 

Test lb1 lb3 lb4 

ClearTemplates 

Train lb3 

Test lb1 lb2 lb4 

ClearTemplates 

Train lb4 

Test lb1 lb2 lb3 

ShowStatistics 

 

ClearStatistics 

Echo Train files: lb5 - lb8,  test files: lb5 - lb8 

ClearTemplates 

Train lb5 

Test lb6 lb7 lb8 

ClearTemplates 

Train lb6 

Test lb5 lb7 lb8 

ClearTemplates 

Train lb7 

Test lb5 lb6 lb8 

ClearTemplates 

Train lb8 

Test lb5 lb6 lb7 

ShowStatistics 

 

ClearStatistics 

Echo Train files: lb9 - lb12,  test files: lb9 - lb12 

ClearTemplates 

Train lb9 

Test lb10 lb11 lb12 

ClearTemplates 

Train lb10 

Test lb9 lb11 lb12 

ClearTemplates 

Train lb11 

Test lb9 lb10 lb12 

ClearTemplates 

Train lb12 

Test lb9 lb10 lb11 

ShowStatistics 

 

Echo 

ClearTemplates 

 

EndProc 

 

 

Proc Test2 

 

Set Path = WAVES\SZAMOK 

 

ClearStatistics 

Echo Train files: lb1 - lb4,  test files: lb1 - lb12 

ClearTemplates 

Train lb1 

Test lb2 lb3 lb4 lb5 lb6 lb7 lb8 lb9 lb10 lb11 lb12 

ClearTemplates 

Train lb2 

Test lb1 lb3 lb4 lb5 lb6 lb7 lb8 lb9 lb10 lb11 lb12 

ClearTemplates 

Train lb3 

Test lb1 lb2 lb4 lb5 lb6 lb7 lb8 lb9 lb10 lb11 lb12 

ClearTemplates 

Train lb4 

Test lb1 lb2 lb3 lb5 lb6 lb7 lb8 lb9 lb10 lb11 lb12 

ShowStatistics 

 

ClearStatistics 

Echo Train files: lb5 - lb8,  test files: lb1 - lb12 

ClearTemplates 

Train lb5 

Test lb1 lb2 lb3 lb4 lb6 lb7 lb8 lb9 lb10 lb11 lb12 

ClearTemplates 

Train lb6 

Test lb1 lb2 lb3 lb4 lb5 lb7 lb8 lb9 lb10 lb11 lb12 

ClearTemplates 

Train lb7 

Test lb1 lb2 lb3 lb4 lb5 lb6 lb8 lb9 lb10 lb11 lb12 

ClearTemplates 

Train lb8 

Test lb1 lb2 lb3 lb4 lb5 lb6 lb7 lb9 lb10 lb11 lb12 

ShowStatistics 

 

ClearStatistics 

Echo Train files: lb9 - lb12,  test files: lb1 - lb12 

ClearTemplates 

Train lb9 

Test lb1 lb2 lb3 lb4 lb5 lb6 lb7 lb8 lb10 lb11 lb12 

ClearTemplates 

Train lb10 

Test lb1 lb2 lb3 lb4 lb5 lb6 lb7 lb8 lb9 lb11 lb12 

ClearTemplates 

Train lb11 

Test lb1 lb2 lb3 lb4 lb5 lb6 lb7 lb8 lb9 lb10 lb12 

ClearTemplates 

Train lb12 

Test lb1 lb2 lb3 lb4 lb5 lb6 lb7 lb8 lb9 lb10 lb11 

ShowStatistics 

 

Echo 

ClearTemplates 

 

EndProc 
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TEST1.LOG: 

 

Project OVSR - CMD Log file 

VectorType = FilterBank 

FilterBankSize = 8 

Train files: lb1 - lb4,  test files: lb1 - lb4 

Word error rate: 2% (3 of 120) 

Train files: lb5 - lb8,  test files: lb5 - lb8 

Word error rate: 5% (6 of 120) 

Train files: lb9 - lb12,  test files: lb9 - lb12 

Word error rate: 7% (9 of 120) 

 

Train files: lb1 - lb4,  test files: lb1 - lb12 

Word error rate: 12% (56 of 440) 

Train files: lb5 - lb8,  test files: lb1 - lb12 

Word error rate: 11% (51 of 440) 

Train files: lb9 - lb12,  test files: lb1 - lb12 

Word error rate: 14% (65 of 440) 

 

FilterBankSize = 12 

Train files: lb1 - lb4,  test files: lb1 - lb4 

Word error rate: 2% (3 of 120) 

Train files: lb5 - lb8,  test files: lb5 - lb8 

Word error rate: 4% (5 of 120) 

Train files: lb9 - lb12,  test files: lb9 - lb12 

Word error rate: 7% (9 of 120) 

 

Train files: lb1 - lb4,  test files: lb1 - lb12 

Word error rate: 12% (57 of 440) 

Train files: lb5 - lb8,  test files: lb1 - lb12 

Word error rate: 9% (41 of 440) 

Train files: lb9 - lb12,  test files: lb1 - lb12 

Word error rate: 14% (63 of 440) 

 

FilterBankSize = 20 

Train files: lb1 - lb4,  test files: lb1 - lb4 

Word error rate: 0% (1 of 120) 

Train files: lb5 - lb8,  test files: lb5 - lb8 

Word error rate: 5% (6 of 120) 

Train files: lb9 - lb12,  test files: lb9 - lb12 

Word error rate: 6% (8 of 120) 

 

Train files: lb1 - lb4,  test files: lb1 - lb12 

Word error rate: 10% (47 of 440) 

Train files: lb5 - lb8,  test files: lb1 - lb12 

Word error rate: 8% (36 of 440) 

Train files: lb9 - lb12,  test files: lb1 - lb12 

Word error rate: 12% (57 of 440) 

 

FilterBankSize = 30 

Train files: lb1 - lb4,  test files: lb1 - lb4 

Word error rate: 0% (1 of 120) 

Train files: lb5 - lb8,  test files: lb5 - lb8 

Word error rate: 4% (5 of 120) 

Train files: lb9 - lb12,  test files: lb9 - lb12 

Word error rate: 5% (7 of 120) 

 

Train files: lb1 - lb4,  test files: lb1 - lb12 

Word error rate: 9% (42 of 440) 

Train files: lb5 - lb8,  test files: lb1 - lb12 

Word error rate: 8% (37 of 440) 

Train files: lb9 - lb12,  test files: lb1 - lb12 

Word error rate: 12% (55 of 440) 

 

VectorType = MelCep 

MelCepSize = 8 

FilterBankSize = 8 

Train files: lb1 - lb4,  test files: lb1 - lb4 

Word error rate: 0% (0 of 120) 

Train files: lb5 - lb8,  test files: lb5 - lb8 

Word error rate: 1% (2 of 120) 

Train files: lb9 - lb12,  test files: lb9 - lb12 

Word error rate: 2% (3 of 120) 

 

Train files: lb1 - lb4,  test files: lb1 - lb12 

Word error rate: 5% (23 of 440) 

Train files: lb5 - lb8,  test files: lb1 - lb12 

Word error rate: 2% (12 of 440) 

Train files: lb9 - lb12,  test files: lb1 - lb12 

Word error rate: 4% (21 of 440) 

 

FilterBankSize = 12 

Train files: lb1 - lb4,  test files: lb1 - lb4 

Word error rate: 0% (1 of 120) 

Train files: lb5 - lb8,  test files: lb5 - lb8 

Word error rate: 1% (2 of 120) 

Train files: lb9 - lb12,  test files: lb9 - lb12 

Word error rate: 3% (4 of 120) 

 

Train files: lb1 - lb4,  test files: lb1 - lb12 

Word error rate: 8% (37 of 440) 

Train files: lb5 - lb8,  test files: lb1 - lb12 

Word error rate: 2% (11 of 440) 

Train files: lb9 - lb12,  test files: lb1 - lb12 

Word error rate: 6% (28 of 440) 

 

FilterBankSize = 20 

Train files: lb1 - lb4,  test files: lb1 - lb4 

Word error rate: 0% (0 of 120) 

Train files: lb5 - lb8,  test files: lb5 - lb8 

Word error rate: 1% (2 of 120) 

Train files: lb9 - lb12,  test files: lb9 - lb12 

Word error rate: 3% (4 of 120) 

 

Train files: lb1 - lb4,  test files: lb1 - lb12 

Word error rate: 9% (41 of 440) 

Train files: lb5 - lb8,  test files: lb1 - lb12 

Word error rate: 3% (14 of 440) 

Train files: lb9 - lb12,  test files: lb1 - lb12 

Word error rate: 8% (36 of 440) 

 

FilterBankSize = 30 

Train files: lb1 - lb4,  test files: lb1 - lb4 

Word error rate: 0% (0 of 120) 

Train files: lb5 - lb8,  test files: lb5 - lb8 

Word error rate: 1% (2 of 120) 

Train files: lb9 - lb12,  test files: lb9 - lb12 

Word error rate: 3% (4 of 120) 

 

Train files: lb1 - lb4,  test files: lb1 - lb12 

Word error rate: 9% (40 of 440) 

Train files: lb5 - lb8,  test files: lb1 - lb12 

Word error rate: 3% (14 of 440) 

Train files: lb9 - lb12,  test files: lb1 - lb12 

Word error rate: 7% (33 of 440) 

 

MelCepSize = 12 

FilterBankSize = 8 

Train files: lb1 - lb4,  test files: lb1 - lb4 

Word error rate: 0% (0 of 120) 

Train files: lb5 - lb8,  test files: lb5 - lb8 

Word error rate: 1% (2 of 120) 

Train files: lb9 - lb12,  test files: lb9 - lb12 

Word error rate: 3% (4 of 120) 

 

Train files: lb1 - lb4,  test files: lb1 - lb12 

Word error rate: 4% (21 of 440) 

Train files: lb5 - lb8,  test files: lb1 - lb12 

Word error rate: 3% (14 of 440) 

Train files: lb9 - lb12,  test files: lb1 - lb12 

Word error rate: 4% (19 of 440) 

 

FilterBankSize = 12 

Train files: lb1 - lb4,  test files: lb1 - lb4 

Word error rate: 0% (1 of 120) 

Train files: lb5 - lb8,  test files: lb5 - lb8 

Word error rate: 1% (2 of 120) 

Train files: lb9 - lb12,  test files: lb9 - lb12 

Word error rate: 3% (4 of 120) 

 

Train files: lb1 - lb4,  test files: lb1 - lb12 

Word error rate: 8% (38 of 440) 

Train files: lb5 - lb8,  test files: lb1 - lb12 

Word error rate: 3% (15 of 440) 

Train files: lb9 - lb12,  test files: lb1 - lb12 

Word error rate: 5% (24 of 440) 

 

FilterBankSize = 20 

Train files: lb1 - lb4,  test files: lb1 - lb4 

Word error rate: 0% (0 of 120) 

Train files: lb5 - lb8,  test files: lb5 - lb8 

Word error rate: 1% (2 of 120) 

Train files: lb9 - lb12,  test files: lb9 - lb12 

Word error rate: 4% (5 of 120) 

 

Train files: lb1 - lb4,  test files: lb1 - lb12 

Word error rate: 9% (43 of 440) 

Train files: lb5 - lb8,  test files: lb1 - lb12 

Word error rate: 3% (16 of 440) 

Train files: lb9 - lb12,  test files: lb1 - lb12 

Word error rate: 6% (29 of 440) 

 

FilterBankSize = 30 

Train files: lb1 - lb4,  test files: lb1 - lb4 

Word error rate: 0% (0 of 120) 

Train files: lb5 - lb8,  test files: lb5 - lb8 

Word error rate: 1% (2 of 120) 

Train files: lb9 - lb12,  test files: lb9 - lb12 

Word error rate: 4% (5 of 120) 

 

Train files: lb1 - lb4,  test files: lb1 - lb12 

Word error rate: 8% (37 of 440) 

Train files: lb5 - lb8,  test files: lb1 - lb12 

Word error rate: 3% (16 of 440) 

Train files: lb9 - lb12,  test files: lb1 - lb12 

Word error rate: 6% (28 of 440) 

 


